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SUB-PIXEL MAPPING FOR CHANGE DETECTION IN FLUVIAL ENVIRONMENTS
Liza Stanci¢, Kristof Ostir, Ziga Kokalj

Abstract

Gravel bars are dynamic areas of bedload deposition in rivers. They perform
important ecological functions and are considered indicators of changes in the
hydrological characteristics of rivers. Satellite images with a frequent revisit period
and a large area of simultaneous coverage are an ideal data source for monitoring
many natural features including gravel bars. Openly and freely available remote
sensing data from the Sentinel-2 and Landsat systems have a spatial resolution that
may be too coarse for accurate detection of gravel bars, especially in mountainous
areas where rivers and related features are narrow. We therefore developed a sub-
pixel mapping method based on spectral mixture analysis. Very high resolution aerial
orthophotos and satellite images, as well as field mapping, were used as reference.
Sentinel-2 and Landsat spectral bands were supplemented with spectral indices to
increase the separability between land cover classes of interest. Automatically
selected endmembers led to results with similar accuracy as when manually selected
endmembers were used. Endmembers selected on one image of the study area
during the leaf-on season could be used to analyse another image of the same study
area acquired with the same remote sensing system at a different time. The fraction
maps were found to be more accurate than maps produced by hard classification
with Spectral Angle Mapper using the same input data. Considering these findings,
we produced fraction maps of gravel, vegetation, and water presence for the Soca
and Sava rivers in Slovenia, and the Vjosa river in Albania for a period of over 30 years.
The thematic accuracy of the maps was within 90%. We also tested the ability of
fraction maps for change detection and found that changes of at least 400 m2 could
be accurately detected. The time series plots can also be used to detect gravel
removal as demonstrated at known excavation sites near the Dolje settlement on
Soca and near Kranj on Sava. The current study contributes to science with new
insights about the application of sub-pixel mapping for monitoring natural
processes. The developed method can be applied to study areas where less in situ
data are available. More informed management decisions can be made based on
newly acquired knowledge.

Key words: bedload, gravel bars, monitoring, mountainous areas, multispectral data,
optical images, remote sensing, rivers, soft classification, spectral mixture analysis,
sub-pixel mapping



PODPIKSELSKO KARTIRANJE ZA ZAZNAVANJE SPREMEMB V RECNIH OKOLJIH
Liza Stanci¢, Kristof Ostir, Ziga Kokalj

lzvleéek

Prodis¢a so dinami¢na obmocja odlaganja plavin v rekah. Opravljajo pomembne
ekoloske funkcije in veljajo za pokazatelje sprememb hidroloskih znacilnosti rek.
Satelitski posnetki s kratkim ¢asom ponovnega obiska in velikim obmocjem hkratne
pokritosti so idealen vir podatkov za spremljanje Stevilnih naravnih znacilnosti,
vklju¢no s prodisc¢i. Prosto dostopni podatki daljinskega zaznavanja sistemov
Sentinel-2 in Landsat imajo prostorsko lo¢ljivost, ki je lahko prevec groba za natan¢no
odkrivanje prodis¢, zlasti na gorskih obmocjih, kjer so reke in z njimi povezane
znacilnosti ozke. Zato smo razvili podpikselsko metodo kartiranja, ki temelji na analizi
vsebnosti spektralnega signala. Za referenco smo uporabili letalske ortofote,
satelitske posnetke zelo visoke locljivosti in terensko kartiranje. Poleg spektralnih
pasov Sentinel-2 in Landsat smo za boljse lo¢evanje med izbranimi razredi
pokrovnosti uporabili spektralne indekse. Samodejno izbrani koncni piksli so
omogocili kartiranje s podobno natanénostjo kot ro¢no izbrani konéni piksli. Kon¢ne
piksle, izbrane na enem posnetku Studijskega obmocja med sezono olistanja, lahko
uspesno uporabimo za analizo vsebnosti spektralnega signala drugih posnetkov
istega obmogja, pridobljene z istim sistemom daljinskega zaznavanja na drugi tocki
sezone olistanosti. Karte delezev pokrovnosti so natanc¢nejse od kart, izdelanih s trdo
klasifikacijo s Spectral Angle Mapper z uporabo istih vhodnih podatkov. Ob
upostevanju teh ugotovitev smo izdelali karte delezev proda, vegetacije in vode za
Soco, Savo in Vjoso (Albanija) za obdobje vec kot 30 let. Tematska natanc¢nost kart je
znotraj 90%. Preizkusili smo tudi sposobnost kart delezev pokrovnosti za zaznavanje
sprememb in ugotovili, da je mogoce natan¢no zaznati spremembe v obsegu vsaj
400 m2. Casovne vrste lahko uporabimo tudi za zaznavanje odstranjevanja proda, kot
je vidno na znanih obmocjih odvzema proda pri naselju Dolje na So¢i in pri Kranju na
Savi. Raziskava prispeva k znanosti z novimi spoznanji o uporabi podpikselskega
kartiranja za spremljanje naravnih procesov. Razvito metodo lahko uporabimo za
proucevanje obmocij, kjer je na voljo manj terenskih podatkov. Na podlagi novo
pridobljenega znanja je mogoce sprejemati boljse odlocitve o upravljanju z vodami
in varstvu habitatov.

Kljuéne besede: analiza vsebnosti spektralnega signala, daljinsko zaznavanje,
mehka klasifikacija, opti¢ni posnetki, plavine, podpikselsko kartiranje, prodisca, reke,
spremljanje, ve¢spektralni podatki
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1
INTRODUCTION

Successful nature conservation, sustainable development, and integrated resource
management rely on accurate monitoring which in turn depends on reliable data.
This is underlined by the UN Statistical Commission, which defined a comprehensive
set of 231 indicators to track progress towards the Sustainable Development Goals
(SDGs) (UN, 2017). Data used to obtain information on the indicators must be
collected in a comparable manner worldwide, must be responsive to change, and
must provide repeatable observations. It is also beneficial if data collection is not very
expensive and lengthy. Remote sensing can play an important role in seeking global
universality of goals, greater objectivity of monitoring methods, and reproducibility
of the approach (Scott and Rajabifard, 2017). In Earth observation (EO), data are
collected with sensors that are not in contact with the surface; the data are then
transmitted to ground stations and processed accordingly. Subsequently, the
processed images are interpreted and analysed, and the acquired information is used
for selected applications (Ostir, 2006). A key factor in using satellite images to obtain
information about the Earth's surface is resolution (Campbell and Wynne, 2011).

Features such as good spatial, radiometric, and spectral resolution, the possibility
of multi-level assessment (local, regional, global), increasing frequency of imaging,
and free access have led to satellite images becoming an important source of various
environmental data (de Sherbinin et al.,, 2014). International associations and
organisations, such as the UN and the Group on Earth Observations (GEO)
recommend EO data as a primary source of information or as a support for other
statistical data in monitoring the progress in sustainable development (GEO, 2017).
However, there is much room for new developments. In hydrology, for example,
obtaining data from alternative sources (e.g., remote sensing) is considered one of



the main challenges (Bloschl et al., 2019). In this study, we investigated the possibility
of using satellite images to obtain the data needed to monitor gravel bars in rivers.
This is related to the SDG indicator of change in the extent of water-related
ecosystems over time (UN, 2017).

The introductory chapter defines the research problem that motivated the
current study, describes the objectives that guided the workflow, and concludes with
an overview of the book structure.

The main research problem addressed by our study is the mapping of river
ecosystems. Several remote sensing products show the presence of surface water
worldwide (Huang et al., 2018). Different applications are available to view the extent
of water over time (Donchyts et al., 2016; Pekel et al., 2016). Other lines of research
have focused on detecting and monitoring specific water-related features, for
example, creating global inventories of rivers (Allen and Pavelsky, 2018), lakes
(Verpoorter et al., 2014), and wetlands (Prigent et al., 2001). These products are based
on freely and openly available remote sensing data with a spatial resolution of 10 m
or less. This resolution is more than sufficient to obtain a global overview. However,
when focusing on changes that are smaller in size, a spatial resolution of 10 m means
that some important features may not be detected. This is especially true for areas
with a high spatial heterogeneity of different land cover classes. Slovenia is generally
characterised by such spatial fragmentation (Foski, 2017; Hladnik, 2005). When
analysing rivers specifically, areas close to the river's source are problematic because
rivers are narrow and therefore difficult to detect on images with a coarser spatial
resolution. To address the spatial resolution problem, we focused on sub-pixel
mapping. Instead of assigning the entire pixel to a single class, the fraction maps
created by sub-pixel mapping indicate the share of each pixel occupied by a
particular land cover class. In this way, even features smaller than the spatial
resolution of a given sensor can be detected and mapped.

There are already applications of sub-pixel mapping in hydrology. Many of them
focus on delineating smaller features such as wetlands (Kamal and Phinn, 2011;
Reschke and Huttich, 2014) or sharp transitions such as coastline mapping (Bishop-
Taylor et al., 2019; Liu et al., 2016). However, we apply this approach to map gravel
bars in rivers. We focused on gravel bars that form above the water surface and are
not overgrown with vegetation. Gravel bars are important features in the fluvial
environment that provide many crucial ecosystem functions. They are dynamic
features that change rapidly following changes in hydrological characteristics.
Changes in water level lead to changes in gravel bar extent. When monitoring gravel



bar changes it is therefore crucial to examine dates with similar hydrological
conditions. Gravel bars in Slovenia are mapped through fieldwork or digitisation of
aerial photographs (Ranfl, 2010). Field mapping is time-consuming and therefore
allows harmonised observation only in a small area. Mapping based on aerial
photographs provides high spatial resolution, but is limited by the execution of aerial
surveys. In Slovenia, each location is systematically imaged by an aerial survey once
every three to four years (Surveying and Mapping Authority of the Republic of
Slovenia, 2015). Intermittent surveys are rare due to high financial costs. On the other
hand, satellite images provide a simultaneous overview of a large area, a new image
is available every few days, and the data can be freely available. Remote sensing data
with frequently repeated observations are therefore well suited for monitoring
gravel bars. However, gravel bars often occur as narrow forms and may be missed in
whole or in part when mapped using satellite images with a coarser spatial
resolution. Sub-pixel mapping can therefore make an important contribution to
more accurate monitoring of gravel bars. Existing methods for gravel bar detection
using EO are based on manual delineation of aerial orthophotos (Geodetic Institute
of Slovenia, 2021) or satellite images (Serlet et al., 2018). However, our aim was to
develop a method that is automated as much as possible.

Spectral mixture analysis (SMA) can be used to determine the degree of presence
of different selected land cover classes within each pixel. This is done by comparing
the spectral response of each pixel to the spectral responses of the endmembers
representing pure pixels that contain only a single land cover class of interest. The
spectral responses of the pixels can be augmented with spectral indices that increase
the separability of the different land cover classes. The results of SMA are land cover
fractions that provide sub-pixel mapping information.

We developed the method for monitoring gravel bars in a study area on the Soca
river in Slovenia, for which many ancillary remote sensing and in situ data are
available. These data were used as a reference for validating our results. The
availability of reference data allowed us to observe and compare the influence of
different variables on the final result. In this way, we were able to derive the main
characteristics of the proposed method that can be transferred for the analysis of
other areas. We also demonstrated the possibility and accuracy of such transfer with
case studies on the Sava river in Slovenia and the Vjosa river in Albania. There are
several similarities between the Soca, which was used for developing the method,
and Sava and Vjosa, which were used to further extend and test the method. All of
the examined rivers spring in young mountains of alpine orogeny. Due to steep
slopes they have large potential energy. There is also a lot of material available for
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the rivers to erode. Therefore, all of the rivers carry extensive amounts of gravel with
Vjosa being particularly well-known for its gravel deposits. So¢a and Sava have similar
average annual discharges of 80 m3/s while that of Vjosa is slightly higher at 150 m?/s.
All the rivers have nivo-pluvial flow regimes with peaks in spring and autumn and
lows in summer and winter.

Most existing applications of sub-pixel mapping focus on the analysis of a smaller
number of timestamps with up to ten different satellite images. Gravel bars are
features that are constantly changing, and therefore we monitored them using a time
series approach. Additionally, satellite images are now available openly and freely,
with a return period of less than a week and a commitment to maintain operational
data provision (Berger et al., 2012; Masek et al., 2020; Woodcock et al., 2008). In
relation to the time series approach, our analysis included several tests regarding the
temporal component of monitoring, such as the transferability of endmembers,
modelling vegetation at different phenological stages, and optimal smoothing of
time series data to eliminate outliers but maintain meaningful discontinuities.

Several constraints must be considered when monitoring natural phenomena
using EO. A key limitation for optical data is the obstruction of the Earth’s surface by
clouds and their shadows. This is particularly pressing when trying to determine
changes immediately after heavy rain, as it is always necessary to wait for clear skies.
A second limitation arises from the study’s focus on narrow river valleys framed by
steep, high slopes. These can be particularly problematic when the Sun incidence
angles are low and topographic shadow obscures much of the area under
observation. Another important point to consider relates to spectral signal analysis.
The spectral properties of different land cover classes change seasonally, for example
in the case of deciduous vegetation, and may also be the result of various physical
factors, such as water, whose reflectance is affected by depth, turbidity, Sun glint, and
other factors. Our study addresses many of these considerations using a variety of
methods. Nevertheless, some of these issues remain as challenges for further
research.

The aim of the study was to develop a method for monitoring gravel bars in rivers
using EO data. Freely and openly available datasets were employed, while selected
very high resolution (VHR) data were used for validation purposes. We use sub-pixel
mapping to obtain the highest level of mapping detail from the input satellite image.
Three land cover classes are considered in the analysis: gravel, vegetation, and water.
These have sufficiently different spectral properties to make the use of a SMA
possible and meaningful. We teste different configurations to produce the most



accurate fraction maps possible. These maps are then used to monitor gravel bars
and detect changes.

We test the assumption that SMA can be used to map gravel bars, surface water
and vegetation with a thematic accuracy of 90%. Freely available satellite images
with a spatial resolution of up to 10 m are used as inputs. Different configurations are
tested to determine those that lead to the highest accuracy of the resulting fraction
maps. We examine the influence of the input images applied for the SMA, including
the type of remote sensing system used for acquisition, geometric and radiometric
accuracy, spatial resolution, and use of spectral indices. The tests also focus on the
characteristics of the endmembers used for SMA - the possibility to automatically
select accurate and appropriate endmembers, the optimal number of endmembers
considered, the addition of shade as an endmember, and the transferability of
endmembers between different images.

The accuracy of the resulting fraction maps is verified both at the pixel level and
at the level of the entire study area to account for geometric shifts of the input
images. Visual interpretation of aerial orthophotos and field mapping are used as
reference data for pixel-level validation. In the study area-level validation, we
compare the results based on manual delineation and different land cover
classifications based on machine learning. Aerial orthophotos and VHR satellite
images are used as input data to produce reference classifications. Finally, we
compare the fraction maps resulting from the soft classification with maps obtained
by a hard classification based on the spectral angle mapping approach to investigate
the contribution of sub-pixel mapping for monitoring gravel bars.

After successfully developing a sub-pixel mapping method, we test its application
on a time series of satellite images to monitor changes. The variability of the extent
and location of gravel bars can be a result of anthropogenic interventions such as in-
channel mining and building infrastructure in the riparian area. Changes can also be
due to natural hydromorphological processes in the river channel. Additionally, there
are seasonal variations in the extent of gravel bars due to seasonal changes in
discharge. An increased discharge can lead to gravel bar flooding and thus also a
change in the location of above-water areas of bedload deposits. These seasonal
changes are not the prime focus of our study as they do not represent real
displacement of gravel bars. Specifically, we are interested in changes in the extent
of gravel bars due to exceptional anthropogenic and natural events larger than
500 m2. Nevertheless, we monitored the seasonality of the variability of gravel bar
presence to enable the detection of real changes caused by exceptional events.



We analyse the annual seasonality of gravel bar presence by examining all
available Sentinel-2 images within the period 2019-2020. Different aspects of time
series development are considered, including endmember selection, vegetation
modelling at different phenological stages, and temporal smoothing of the resulting
land cover presences. The validity of the resulting time series data is verified by
comparison with hydrological data measured in situ at a gauging station. Next, we
demonstrate the ability to make comparisons between different years and satellite
sensors by producing fraction maps of gravel presence for three different rivers with
a total combined length of over 250 km and observing a time span of over 30 years
using Sentinel-2 and Landsat images. Finally, we test the ability of the proposed
method to detect changes in gravel bars. Both the precision and sensitivity of change
detection based on fraction maps are verified using VHR reference data. We also
studied the possibility of monitoring gravel bars using time series data by observing
how known changes manifest themselves on land cover presence plots.

We set the following research objectives to reach the aim of the study:

- study and summarise the characteristics of the processes driving gravel bar
formation and changes,

- define the reference data and the validation method for an accuracy
assessment of the gravel bar maps produced,

- analyse the characteristics of openly and freely available input satellite
images that affect the accuracy of fraction maps and select the optimal
settings that result in the best products,

- testand validate different strategies for selecting endmembers required for
the SMA,

- produce fraction maps of the fluvial environment based on the SMA and
compare them to the results of a hard classification performed with the
same input data,

- develop a time series of land cover presence in the fluvial environment
based on the created fraction maps,

- produce fraction maps of gravel presence for several hundreds of kilometres
of rivers and over a time period of several decades, and

- assess the ability of fraction maps to detect changes in gravel bars, both by
comparing two timestamps and by observing a time series of presence data.

The expected results of different tests combined with validation will provide new
insights into the potential of using EO data to monitor the natural environment. The
use of EO data that covers large areas at the same time allows the method to be



deployed over a larger area simultaneously. This can overcome technical and
logistical limitations often associated with field monitoring methods. In addition, EO
data enables a faster detection of changes. The focus of the study is on gravel bars,
but the findings could also apply to other small and dynamic features with a distinct
spectral response. We develop a pioneering process of sub-pixel mapping for change
detection in gravel bars by adapting, augmenting, and improving existing SMA
approaches. The developed method enables more accurate monitoring of the
ecologically and socially important ecosystem. The results of the process and new
insights into algorithm development will be useful to apply the method to otherland
cover classes in different ecosystems for various purposes in the future. The expected
results enable more accurate mapping and conservation of areas characterised by
high spatial fragmentation, such as mountainous areas, as the developed method
allows the detection of changes that would not be noticeable with input EO data due
to their spatial resolution. By testing the method in a study area where many
reference data are available, we aim to develop a workflow that can be applied to
other locations with a lower abundance of data. In this way, we hope to contribute
to a wider use of EO data for better monitoring and understanding of the processes
on the Earth’s surface.

In addition to technical and applied considerations, the study includes findings
from a variety of disciplines, including geodesy, geography, and hydrology, with the
goal to strive towards interdisciplinarity, and wide dissemination of findings about
the benefits of remote sensing. With the geographical approach of a holistic view of
space, we aim to bridge the gap between technical sciences, natural sciences, and
humanities.

This book has seven chapters. The first (this) chapter is introductory and contains
the definition of the research problem, the statement of the aim of the study, the
objectives, and the expected results, and concludes with an overview of the book
structure.

The second and third chapters summarise the existing literature that forms the
basis for the present study. The second chapter focuses on gravel bars, the
geomorphological processes that form them, the different types and shapes of
gravel bars, and their role in the wider fluvial system. The third chapter concerns the
selected method for mapping gravel bars - the SMA. The development of the
method is presented, followed by a description of the processes, assumptions, and
formulations associated with the method. The characteristics of endmember
selection and spectral unmixing, which are the main steps of SMA, are outlined.



The fourth chapter is central to the book, as it describes the tests conducted to
develop a workflow that produces the most accurate gravel bar maps. These tests are
carried out by mapping a selected study area on the Soca River in Slovenia, where
the river is narrow and gravel bars are abundant. The chapter first describes the data
and materials used to generate gravel bar maps. It then defines the validation
method applied to compare different fraction maps. Next, the optimal characteristics
required for the input satellite images are determined. Subsequently, various
methods and parameter settings for endmember selection are tested. Land cover
fraction maps are then generated and compared with the results of hard land cover
classification using the same input data. Finally, a time series of land cover presence
is produced based on the proposed fraction mapping method.

The fifth chapter evaluates the potential of the proposed method for monitoring
gravel bars. Gravel bar maps are produced for extensive river sections spanning
several hundred kilometres. The chapter assesses the method’s ability to detect
changes across multiple aspects, including sensitivity and precision. Change
detection is evaluated through comparisons of selected fraction maps as well as
analyses of time-series plots of gravel presence. In addition, results derived from the
fraction maps are compared with in situ measurements from gauging stations.

The sixth chapter discusses the results and verifies the proposed research
objectives. The study is evaluated in terms of its wider context and scientific
contribution. Identified limitations of the proposed method and possible solutions
are described.

The conclusion outlines opportunities for further research and applications.
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2
CHARACTERISTICS OF FLUVIAL GRAVEL BARS

This chapter presents the main concepts related to the motivation for the thematic
application. In terms of thematic consideration, fluvial gravel bars are described,
including the geomorphological processes that form them, the patterns of their
formation, and their role in the larger river system.

Gravel bars are areas of temporary sediment deposition in riverbeds (Robert,
2003). They are interesting from both a hydromorphological and ecological
perspective. Fluvial gravel bars are classified as habitat types that should be
maintained in a favourable condition as a matter of priority according to the
European Habitats Directive (EC DG ENVIRONMENT, 2013; OJ L 206, 1992). In
Slovenia, their importance for environmental conservation was adopted by the
Decree on Habitat Types (Official Gazette of the Republic of Slovenia, No. 112/03,
2003). Gravel bars are dynamic and unstable habitats that are sensitive to
hydrological changes and as such are good indicators of disturbances in the fluvial
environment (Kiss and Andrasi, 2014). They play a role in water filtration,
groundwater infiltration, mitigation of river bank erosion, and in increasing the river’s
attractiveness for recreation (Robert, 2003). Moreover, as contact areas between
water and land, they represent an important habitat type with high species diversity
and the occurrence of rare species (Langhans and Tockner, 2014; Zeng et al., 2015).
In Slovenia, several animal species, such as the birds little ringed plover (Charadrius
dubius) and common tern (Sterna hirundo), and plant species, such as Chondrilla
chondrilloides, are closely associated with gravel bars (Richards, 1990; Snow and
Perrins, 1998; Gersi¢, 2010). Vegetation sampling on gravel bars in Slovenia
demonstrated the high diversity of species and communities that develop in such
habitats (Skornik et al., 2016). The notably high vegetation complexity is caused by
variable flood disturbance and changing soil properties. These findings highlighted
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the importance of preserving gravel bars as an integral part of functioning fluvial
ecosystems (Skornik et al., 2017). Almost 2,300 ha of gravel bars in Slovenia have been
identified as potential habitat areas of European importance (Jogan et al., 2004).

The existence of gravel bars is threatened due to in-channel mining (Jogan et al.,
2004; Klanecek et al., 2005). In addition to material extraction, the extent of gravel
bars is also influenced by other human activities, such as the construction of
hydropower plants, gravel retention systems, and flood control measures (Gersic,
2010). Major interventions in the river environment, such as the construction of
dams, disturb the balance between inflow and outflow of sediments. Planned
removal, excavation, and emptying of sediments from the river channel is necessary
in some places due to deposition (Nistor et al., 2021; Ranfl, 2010). Decades of studies
on impounded rivers have shown that hydropower operations result in numerous
morphological changes downstream from the dam, including widening of the
riverbed, reduction in the number of rapids and pools, increase in gravel bars and
islands, and increase in bedrock outcrops in the riverbed. Daily water discharges
result in the removal of finer particles. Fewer meanders and sequences of rapids and
pools reduce the riverbed roughness and increase the carrying capacity of the river,
i.e., its ability to transport sediments (Assani and Petit, 2004).

2.1 Geomorphological processes of fluvial sedimentation

River channels consist of the riverbed, which is permanently or temporally covered
with water at normal discharge, and river banks, which are the sloping land on the
edges of the river channel (Mikos et al., 2002a; Szoszkiewicz et al., 2020). Rivers are
constantly reshaping their channels. High waters have the largest influence on river
channel changes. During high water periods, geomorphological processes (erosion,
transport, and sedimentation) occur with the highest intensity. Erosion actively
transforms the riverbed, sediments are then transported, and subsequent
sedimentation transforms the riverbed passively (Ranfl, 2010). Erosion can occur by
downcutting when the river deepens its own bed, or laterally by wearing away of the
outer river banks in bends. Sediment transport in the river occurs in solution, in
suspension, or by traction or saltation along the riverbed. Minerals, dissolved in water
as it percolates through the soil, are transported in solution. Particles of clay, silt, and
sand are transported in suspension as suspended load. The largest proportion of
sediment is usually transported in suspension. The deposition of suspended load
forms sand bars in the lower river courses (Strahler and Strahler, 2005). Larger, more
rounded, and heavier sediments are transported along the bottom of the riverbed by
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bouncing, sliding, and rolling. These are known as bedload and are key for the
development of gravel bars (Ger3ic¢ et al., 2014). The amount of transported sediment
depends on river discharge and flow velocity. The carrying capacity of the river
increases with the square of its flow velocity (Tarbuck and Lutgens, 2005). Thus, a
higher carrying capacity can be achieved by a faster flow velocity, a higher discharge,
a steeper gradient, finer material, a narrower riverbed, and a steeper river bank slope
(Robert, 2003).

The geomorphological processes that occur in a given river section depend on
the relationship between the carrying capacity of the river and the amount of
sediment present. When the carrying capacity is larger than the sediment amount,
the riverbed is deepening. When the two quantities are balanced, an equilibrium
river section is formed. When the sediment amount is larger than the carrying
capacity, deposition occurs (Ranfl, 2010).

The relationships between particle erosion, transport, and deposition are shown in
the Hjulstrom diagram (Nichols, 2009, 48). Depending on the relationship between
water flow velocity and particle size, the diagram shows the critical erosion velocity
curve and the average fall or settling velocity curve. The areas between the curves
represent different geomorphological processes (Nichols, 2009).

The carrying capacity of a river can be calculated from average annual discharge
duration, slope at the riverbed bottom, width of the riverbed bottom, slope of the
bank cross-sections, and mean sediment grain size (Mikos et al., 2002b). The average
annual discharge duration curve is obtained by arranging the chronologically sorted
hydrological data on discharges from the hydrogram by size. Data on mean sediment
grain size are obtained by analysing the grain size of sediments from samples
collected in situ (Ranfl, 2010).

2.2 Gravel bar formation

To develop a method for gravel bar mapping it is necessary to understand the
processes of gravel bar formation in order to know where in the river bed gravel bars
can be expected. Even more importantly, the dynamics help to explain the patterns
of their disintegration and re-establishment. This is key for successful monitoring and
accurate interpretation of results. Robert (2003) distinguishes between different
gravel bar types based on the processes that formed them. Accordingly, gravel bar
types are divided into two main categories — unit and complex bars. Complex bars
are formed in successive periods of erosion and deposition. Unit bars are formed only
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by deposition and have a stable morphology. Longitudinal, transverse, point, and
diagonal bars are different types of unit bars. In complex settings, it is difficult to
make a clear classification because the bars are formed by different combinations of
processes. In the case of complex gravel bars, we can distinguish all the above forms
as well as the medial and lateral bars (Figure 1). In addition to the classification
according to the formation processes, it is also common to classify gravel bars
according to their position in the riverbed. In this respect, there are two main types
of fluvial gravel bars. The first type includes bars that form in the middle of the
riverbed. The second type consists of bars along the river bank. Despite different
specific classifications, it should be noted that one bar type can be transformed into
another over time (Robert, 2003).
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Figure 1: Fluvial gravel bar types (after: Robert, 2003). © André Robert.
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The main reason for gravel bar formation is a local reduction in the carrying
capacity of a river. This often occurs in the inner part of river bends, where friction
losses lead to a reduction in flow velocity and thus to a smaller carrying capacity. As
aresult of the reduced carrying capacity, sediment deposition occurs. The deposited
sediments cause further friction, and so the sedimentation process continues
(Tarbuck and Lutgens, 2005).

Gravel bars can also form in the middle of the river channel. Where the shear force
is close to the critical force for particle displacement, patches of bedload sediment
pushed along the bottom of the riverbed may begin to deposit. In the first stage of
gravel bar formation, coarser bedload material is deposited in the area between
individual river flows with higher carrying capacities. Later, finer material is deposited
behind larger particles in these areas of lower carrying capacity. Other sediments that
are being pushed along the riverbed bottom continue to accumulate on these areas
of deposition, causing the gravel bar to grow in width and length (Robert, 2003). Due
to the resulting hydro-morphological feature, the river flow is divided into two parts
(Kiss and Balogh, 2015).

The described deposition in the form of a mid-channel gravel bar is one of the
formation mechanisms of branched or braided streams. A second characteristic
mechanism is the transition of a transverse gravel bar to a mid-channel bar, also
under the influence of sediment patches pushed along the riverbed. Additionally,
braided streams may develop through processes of erosion. When a gravel bar is
dissected, a new river channel is formed by erosion of a side bar. Another erosional
process in river braiding is the disintegration of bars into a network of channels with
intermediate bars due to deposition in the form of characteristic sedimentary
tongues (Figure 2). There are two other important braiding processes. The first is the
formation of successive straight and narrow chutes and downstream deposits in the
form of lobes. The last important branching process is the relatively sudden
switching of river flow from one channel to another (Robert, 2003).

Gravel bars are normally part of the riverbed. The height of gravel bars is usually
lower than the height of the top of the river channel. As the height of gravel bars
increases and they are covered by permanent vegetation, gravel bars can develop
into fluvial islands. These represent more stable features as they are not removed by
regular floods (Kiss and Andrasi, 2014). Despite the different names, gravel bars and
fluvial islands are features with similar origins and morphological characteristics
(Robert, 2003).
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Figure 2: Braiding processes and depositional morphology (after: Robert, 2003). © André Robert.

2.3 Therole of gravel bars in the fluvial gravel regime

The shape of gravel bars and the size of deposited particles depend on the average
slope of the riverbed and the river discharge. Sediments at the bottom of the riverbed
can be divided in two layers — an upper and a subsurface layer. The upper layer has a
coarser particle composition because river flow washes out the finer particles, while
the coarser particles remain in place because of their weight. Generally, particles of
similar size to those already present at the riverbed bottom remain in place. Thus, the
largest particles are deposited in erosion pools, coarser material in gravel bar heads,
and finer material at bar edges. The reason for the removal of particles that have a
different size structure than those already present is the turbulence of the river flow.
Turbulence is low in the pools, then increases until the head of the bar and remains
high until the next pool. Large deposited particles on the bar head increase
turbulence, reducing the likelihood of smaller particles being deposited near them
(Robert, 2003). The diversity of sediment sizes decreases in lower river reaches (Ranfl,
2010).
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Based on several sources, Robert (2003) notes that the patterns of flow and
deposition of particles in channels along the central bars are similar to those in
individual meandering riverbeds. In bends, the water flow is moved towards the
outer bank under the influence of centrifugal force. This leads to an increase in water
level in the outer part of the riverbed, especially in fast flows and sharp bends. Due
to the locally unbalanced forces of gradient and gravity, a secondary flow is formed.
At the water surface, the secondary flow runs towards the outer bank, while at the
bottom of the riverbed it flows towards the inner bank. Gravel bars form and grow
on the inner part of the bend (Figure 3).
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Figure 3: Model of secondary flows, sediment sorting, and downstream deposition of finer
particles in a gravel bar. The arrows on the image of the gravel bar indicate the direction of bedload
transport. The arrows on the cross-sections indicate the flow direction and secondary circulation
(after: Robert, 2003). © André Robert.

28



The highest carrying capacity of a river is at peak discharge. As discharge
increases, material is removed from upstream parts of gravel bars, and as discharge
decreases, material begins to be deposited. At the topographically highest parts of
gravel bars, reverse processes occur — deposition when discharge is high and erosion
when discharge is low. Although the particular material that makes up gravel bars is
changed at higher discharges, the location of bars in the riverbed usually does not
change (Robert, 2003).

Gravel bars are typical features of braided rivers. Gravel bar head consists of
shallow rapids which have a higher gradient and roughness in a general area of lower
gradient. Rapids form across the riverbed as water flows over larger rocks. In an area
of rapids, the river flow is shallow and fast. The basic unit of braided rivers is the pool,
which is located upstream of the gravel bar. The pool is a larger depression in the
riverbed bottom where the river flow slows down (Ranfl, 2010). Some authors also
consider the combination of a pool and gravel bar as the basic unit of a riverbed. In
braided rivers, pool and bar units line up next to each other in parallel rows. The
sequence of pools and bars forms the third basic unit of braided streams, namely a
series of river confluences and bifurcations (Robert, 2003).

The number, location, shape, composition, and size of gravel bars indicate the
geomorphological processes occurring in the river channel. Gravel bars are also very
dynamic features that can be easily and rapidly changed. They are therefore good
indicators of alterations in the fluvial environment. Gravel bars that form above the
river flow surface can be observed with optical remote sensing. The wide availability
of free and open satellite images allows rapid detection of changes in gravel bars and
monitoring of associated processes.
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3
THEORETICAL BACKGROUND OF SPECTRAL MIXTURE
ANALYSIS

This chapter outlines the background of the method proposed for mapping and
monitoring gravel bars in narrow rivers — spectral mixture analysis (SMA). The
theoretical framework of the main method components and the associated
terminology are outlined.

To enable the use of free and open data for monitoring narrow rivers in
mountainous environments, a land cover fraction mapping method, based on the
spectral mixture analysis (SMA) is proposed. The origins, main concepts, and existing
applications of SMA are presented in the next chapters.

The SMA can mitigate mapping limitations associated with the spatial resolution
of satellite images (Atkinson, 2005; Foody et al., 2005). With SMA, it is possible to
perform thematic mapping at sub-pixel level by determining the proportion of
selected land cover classes in each pixel (e.g., Ling et al., 2016; Mylona et al., 2018).
This is done by comparing the spectral signature of each pixel with those of the
selected land cover classes of interest. The spectral signatures of the target land cover
classes are therefore key information for the SMA. Pure pixels that contain only one
land cover class and represent the extreme points in spectral space are referred to as
endmembers (Keshava, 2003; Somers et al., 2011; Veganzones and Grafia, 2008).

The original purpose for developing SMA was to observe rock surface and mineral
composition on Mars (Adams et al.,, 1986). The method has since been used for
various objectives, including land cover mapping (Ling et al, 2016), forest
disturbance detection (Hirschmugl et al., 2014), determining land cover fractions in
urban areas (Kardi, 2007; Priem et al., 2019), monitoring urban expansion (Aina et al.,
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2019), soil degradation monitoring (Dubovyk et al., 2015), grassland monitoring
(Shao et al., 2018), river bank mapping (Niroumand-Jadidi and Vitti, 2017), and
coastline mapping (Foody et al.,, 2005; Muslim et al., 2007). Both hyperspectral
(Keshava, 2003; Somers et al., 2011) and multispectral images have been analysed
with SMA, including images acquired by Landsat (Wu, 2004) and Sentinel-2 (Mylona
et al., 2018) that were used in this study.

3.1 Endmember selection

Several methods for selecting (also known as extracting) endmembers have been
proposed. Both the number and the spectral properties of endmembers have to be
selected. Determining the sufficient number of endmembers to correctly describe
the variability in a scene usually involves testing different configurations and
selecting the one that yields the smallest error (Somers et al., 2011). Endmember
spectral signatures can be obtained from available spectral libraries, created using
laboratory or field measurements with spectro-radiometers (Schmidt and Scarth,
2009). Alternatively, endmembers can be selected from image pixels themselves.
However, this is only possible if the land cover types in the analysed image occur in
such a formation that pure pixels are present. If all pixels are mixed, non-pixel
endmembers can be estimated based on the image data (Du, 2018).

We used the N-FINDR algorithm for automatic selection of image endmembers. It
is an established method that has been shown to be effective in finding distinctive
pixels (Du, 2018). The algorithm determines the endmembers by searching for the
user-defined number of pixels which form the extremities of a geometric body with
the largest volume in the multidimensional space defined by the number of input
image bands.

To begin with, a random set of pixels is selected and the volume of the geometric
body that they outline is calculated (Figure 4). Then, one of the pixels is swapped with
a different new pixel and the volume of the newly formed geometric body is
calculated. If the new volume is larger than the previous volume, the first pixel is
replaced by the second pixel as a potential endmember. This process continues until
no more pixels can be exchanged (Winter, 1999).
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Figure 4: An example of endmembers selected as extreme points in a two-dimensional spectral
space.

3.2 Spectral unmixing

The SMA works by modelling the reflectances of mixed pixels. The method converts
the reflectance in a satellite image to fractions (also known as abundances) of the
selected land cover classes using information about the spectral characteristics of
endmembers, i.e., the spectral representations of pure land cover classes. The
methods of modelling can be divided into linear and nonlinear. The choice of the
model reflects the expected mechanism of spectral signal mixing in the analysed
image. Linear mixing occurs when different land cover classes exist in a spatially
bounded formation. The key physical assumption of linear SMA is that each incoming
photon reacts with only one land cover type. Conversely, nonlinear mixing occurs
where different materials are closely intertwined. In such cases, spectral signal mixing
is more complex because each single incoming photon reacts with numerous
different land cover types resulting in multiple scattering effect (Keshava, 2003;
Keshava and Mustard, 2002).

Nonlinear mixing often occurs in analysis of sand or soil when many different
materials appear very close together. Simplifications and assumptions are often
necessary to enable nonlinear mixture modelling. The bilinear model is commonly
used with the assumption that the product of two or more endmembers represent
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the multiple scattering effect. If we consider p endmembers and only take into
account scattering between two endmembers a signature matrix My, can be defined
as [my, my, .., My, MiMy, ..., My_imy]. A pixel vector r can then be expressed as (Du,
2018):

r = MNL OCNL—I— € (1)

with o¢y; representing an abundance vector combining linear and nonlinear
abundances. Subsequently, an ordinary least squares solver can be applied to
estimate oc; (Dobigeon et al., 2014; Heylen et al., 2014).

However, in modelling land cover, linear spectral mixing is considered more often
as the different land cover classes are not as intermixed as for example different
materials in soil. In line with the assumptions of linear spectral mixing, the mixed pixel
signal (r) can be described as a combination of endmember spectral signals,
weighted by sub-pixel land cover presence. The model is therefore described as
follows (Adams et al., 1986; Somers et al., 2011):

r = Mf + ¢ (2)

where m is an array with columns representing the spectral signatures of selected
endmembers, f is a vector of land cover presence fractions, and € is noise or signal
fraction that cannot be modelled with the selected endmembers.

The described equation can be solved if the spectral signals of endmembers are
known and the number of endmembers is less than the number of spectral bands in
the analysed image. Commonly used equation solvers are quadratic programming,
maximum likelihood method, and least squares method. The SMA can be applied
without constraints, but to obtain physically meaningful results, the coefficient
values in Equation (2) are often restricted to positive numbers. An additional
condition that can be implemented is that the sum of the coefficients must equal
one. When the outlined conditions are applied, the resulting SMA can be described
as fully constrained (Somers et al., 2011).

After establishing the theoretical background related to the geomorphological
features under observation - fluvial gravel bars - this chapter provided an overview
of the method proposed for monitoring. The method development, the key steps,
and examples of existing applications were presented. The next chapter describes
the main tests and decisions made in relation to the development of an SMA-based
method for gravel bar monitoring.

34



The self-purifying capacity of a river is increased by the - R
presence of gravel bars as water filtrates through particles :
_ ofdifferent sizes. *~ . " e g 5

S ; Foto: Liza Stanci¢

SN




4
METHODS

The chapter describes the process of selecting the most appropriate method for
mapping gravel bars with SMA. Characteristics of input satellite images and reference
data are presented first. Next, the validation process for comparing different
methods is explained. Then, the most optimal characteristics of input satellite images
are chosen, followed by an overview of the endmember selection process. The
resulting soft classification using SMA is then compared to the results of a hard
classification. The chapter concludes with a description of tests associated with the
development of a land cover time series.

4.1 Data and materials

Fluvial gravel bar mapping was performed using Landsat and Sentinel-2 optical
satellite images. Additionally, a vector layer of water lands was used to delineate the
area of analysis. Finally, WorldView-2 and Pléiades very high resolution images along
with areal orthophotos were used for validation. A detailed description of the data
used is given in the following subchapters.

4.1.1 Inputsatellite images

Passive Landsat and Sentinel-2 optical satellite images were used as input data.
Landsat is a system of the United States Geological Survey (USGS) that has been in
operation since 1972 (Barsi et al., 2014; Wulder et al., 2019). Gravel bars can be
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mapped with images acquired by the Thematic Mapper (TM)', the Enhanced
Thematic Mapper Plus (ETM +)°, and the Operational Land Imager (OLI)* sensors.
Since 1982, Landsat has been providing images with a spatial resolution of 30 m and
a temporal resolution of 16 days. The images consisted of seven bands until the
launch of Landsat 7 with the ETM+ which introduced the additional panchromatic
band. From 2013 onwards, OLl and the Thermal Infrared Sensor (TIRS) enable sensing
in three additional bands (coastal aerosol, cirrus, and additional thermal band),
bringing the total number of bands in Landsat images to eleven.

The Sentinel-2 system is operated by the European Space Agency (ESA) for the
European Commission. Sentinel-2 images acquired with the Multi-Spectral
Instrument (MSI) sensor have spectral characteristics that are similar to Landsat;
Sentinel-2 acquires images in 13 comparable spectral bands (Figure 5). The images
have spatial resolutions of 10 m, 20 m, or 60 m, depending on the spectral band
(Table 1). The first satellite — Sentinel-2A — was launched in June 2015 and the second
- Sentinel-2B - in March 2017, increasing the temporal resolution of the system at
the equator from ten to five days (Drusch et al., 2012; Gatti and Galoppo, 2018).
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Figure 5: Spectral bands of Landsat 7, Landsat 8, and Sentinel-2 (source: NASA, 2015).

' The TM sensor was carried on board Landsat 4, which was operating from 1982 until 2001, and Landsat 5,
which was operating from 1984 until 2013.

> The ETM+ sensor is carried on board Landsat 7, which has been operating since 1999 until present. The
scan line corrector of the sensor failed in 2003 resulting in approximately 25% data loss for any given scene.

* The OLI sensor is carried on board Landsat 8, which has been operating since 2013 until present.
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4.1.2 Water cadastre

The Water Lands dataset from the Water Cadastre maintained by the Slovenian Water
Agency was selected to focus our observation area on riparian zones (Slovenian
Water Agency, 2021a). Water lands of inland running waters comprise the riverbed
up to the first significant geomorphological transition. River banks and active gravel
bars are therefore included in the analysis. The dataset was developed in accordance
with the Water Act (Official Gazette of the Republic of Slovenia, No. 67/02, 2002) and
is based on the map of surface waters. During a pilot study in 2011, surface waters
were mapped on 10% of the area of Slovenia that included the larger river valleys.
The approach was based on stereorestitution from cyclic aerial photography of
Slovenia (CAS). The main challenge in the pilot approach was the detection of water
surfaces under canopy, especially because CAS is conducted during the leaves-on
period due to the requirements of agriculture monitoring. Aerial laser scanning (ALS)
data acquired during a pilot campaign in 2011 provided a new source for mapping
surface water, so the mapping method was updated in 2012. The final method used
stereo pairs of the latest CAS images as the basis for data collection, with ALS
acquired in 2014 and 2015 and derived products supporting interpretation and
mapping in forested areas. In 2015 and 2016, surface waters on the remaining 90%
of Slovenia were mapped using this method (Geodetic Institute of Slovenia, 2021).
The minimum width of the mapped running surface water is 1 m. The positional and
vertical accuracies of the acquisition are £ 1 m.

4.,1.3 Definition of land cover classes of interest

In line with our research question we considered three land cover classes that are
most widely present in riparian environments - gravel, vegetation, and water. The
characteristics of SMA require that we consider land cover classes with very different
spectral signatures. If we examined classes with similar spectral signatures, it would
be very difficult to determine their individual contributions to the spectral signal
from a particular signal. Thus, some simplifications were necessary when selecting
the land cover classes to be considered. The gravel class included gravel bars, rocks
and boulders, sand, and built-up areas. We minimised the intrusion of built-up areas
and focused our analysis on gravel bars by restricting the area of observation to the
extent of water lands with the data set described above. The vegetation class
included trees, shrubs, and grassland. The water class included rivers, streams, and
standing water. Shade can sometimes erroneously be mapped as water, therefore we
tested the possibility of mapping it as a separate class, as described in chapter 4.4.3.
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4.2 Validation of fraction maps

Three different approaches were tested for the validation of land cover fraction maps.
First, a pixel-based approach using aerial orthophotos as reference was
implemented. In the second approach, the maps were also validated on a per-pixel
basis, but using in situ land cover mapping as reference. The pixel-based approach
can be seen as providing site-specific accuracy (Campbell and Wynne, 2011). We also
implemented an area-based validation approach which provides non-site-specific
accuracy to account for possible misalignment of pixels due to errors in satellite
image geometry (Figure 6).
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Figure 6: Validation of fraction maps.

42,1 Casestudyarea

A section of the Soca river in north-western Slovenia, Central Europe, was selected to
test different methods for mapping and monitoring gravel bars. The selected river
section is approximately 15 km long and is centred on 46.2° N, 13.6° E. The section is
located between the settlements of Kobarid and Tolmin (Figure 7).

The bedrock in the area consists of limestone and dolomite (Geological Survey of
Slovenia, 2019). The climate is mountainous to temperate Mediterranean with most
of the area belonging to the temperate climate with no dry season and a warm
summer — Cfb — according to the Képpen-Geiger classification (Ogrin, 1996; Ogrin
and Plut, 2009). The flow regime of the river is nivo-pluvial with the main discharge
peak in April or May due to snowmelt. There is a secondary discharge peak in
November due to heavy autumn rainfall. The main low discharge period is in January
or February as precipitation is temporally stored in the form of snow. The secondary
low discharge period is in August when evapotranspiration is highest (Ogrin and Plut,
2009). Precipitation is very high in this area, averaging over 2500 mm annually for the
last 50 years (Slovenian Environment Agency, 2021a).
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Figure 7: Location of the study area (red rectangle) in the upper Soca river basin, north-western
Slovenia, Central Europe. The red rectangle indicates the entire study area, while the purple
rectangle marks the location of the enlarged view in Figure 25. Data source: Surveying and
Mapping Authority of the Republic of Slovenia, 2016, 2021a, 2021b, Natural Earth, 2020.
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Figure 8: Land cover of the study area. The arrows show the viewing direction of photographs.
Data source: Ministry of Agriculture, Forestry and Food of the Republic of Slovenia, 2020; Slovenian
Water Agency, 2021a; photographs: Liza Stancic.
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The terrain in the Soca basin in Slovenia is varied, ranging from 153 m to 2864 m
above sea level. The combined effect of topography and precipitation results in high
erosion rates and consequently large amounts of river bedload in the Soca. The
selected river section contains several gravel bars and is therefore very suitable as a
test area. In addition, the river is often not wider than 20 m, making the section
interesting for the application of SMA. The wider study area was narrowed down to
the extent of the water lands (Slovenian Water Agency, 2021). Most of the study area
is covered by water, followed by gravel bars and deciduous forest (Figure 8).

4.2.2 Pixel-based validation

The pixel-based validation method compared land cover fractions derived from SMA
with those observed in reference data at the pixel level (Schug et al., 2018). This
validation provides site-specific accuracy by assessing agreement between fraction
maps and reference data at specific locations (Campbell and Wynne, 2011). We used
aerial orthophotos, very high resolution satellite images (WorldView-2, Pléiades), or
own field mapping as reference data sources. Independent of the reference data, 50
random plots were selected in the study area. Their size corresponded to the spatial
resolution of satellite images and covered the extent of one pixel. Within each plot, a
regular grid of 100 points was created and the land cover class at each point was
determined. Reference land cover fraction values were calculated and compared to
fractions obtained from the SMA. The comparison was then made by computing the
mean absolute error (MAE) (Equation (3).
n

1
MAE = —Z|xi—x| 3)
n

i=1

as the absolute difference between the land cover fractions on the reference data (x)
and the land cover fractions derived from the SMA (x;) (Demarchi et al., 2012; Okujeni
etal, 2018; Li, 2021). The value of MAE was calculated for all 50 plots (n = 50).

4.2.2.1 Aerial Orthophotos

In the programme of the CAS, aerial orthophotos are acquired each year for about
one-third of Slovenia. Thus, the same area is imaged once every 2 to 4 years. The
timing of the imaging varies depending on weather conditions. For the study area,
the three orthophotos were acquired on 26 June 2015, 14 October 2017, and 5
September 2020. Visible spectral bands are available with a spatial resolution of
0.25 m and 0.5 m, and a near infrared band is available with a spatial resolution of
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0.5 m. All of the available products are acquired simultaneously and later pan-
sharpened and resampled as needed (Surveying and Mapping Authority of the
Repubilic of Slovenia, 2021c). The positional accuracy of aerial orthophotos is 0.2 m
(Surveying and Mapping Authority of the Repubilic of Slovenia, 2021c).

4.2.2.2 Field Mapping

A field mapping campaign was conducted in the study area from 25 April 2020 to 3
May 2020. We randomly selected 50 plots with an extent of 60 m x 60 m. Plots were
sized to fit at least one whole pixel of each of the analysed satellite images into each
mapped plot. The selection of plots to be mapped was done by first plotting a grid
of 60 m X 60 m over the entire study area. Subsequently, we used the Random
selection function in the QGIS software (version 3.10) to select 50 plots across the
entire study area (QGIS Development Team, 2020). The most recent aerial
orthophotos available at the time, acquired on 14 October 2017, were used as
background on which changes were recorded. Therefore, the positional accuracy of
the field mapping can be considered identical as that of the aerial orthophotos
(0.2 m). We mapped the three land cover classes of interest — gravel, vegetation, and
water — at a scale of 1:1000. The plots selected for field mapping were mostly covered
by vegetation (Figure 9).

water 29.9
vegetation 61.9
0 20 40 60

land cover class presence (%)

Figure 9: Land cover presence as determined with field mapping on 50 randomly selected plots.

4.2.3 Area-based validation

The geolocation accuracy of Sentinel-2 images is known to be within 11 m for 95% of
the images (Clerc and MPC Team, 2021). However, even small shifts can lead to
considerable inaccuracies when analyses are performed at the level of single pixels.
To account for such potential errors, we also carried out a validation of the fraction
maps at the scale of the entire study area (Li et al., 2020). This constituted the area-
based validation. The result of area-based validation is non-site-specific accuracy as
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it reports the agreement between fraction map and reference data in terms of the
overall figures and not at specific locations (Campbell and Wynne, 2011). The extent
of each land cover class of interest was calculated using the fraction maps and
compared with the extents based on reference data. Different sources for obtaining
reference data were tested, namely manual digitisation and supervised classification
based on machine learning (ML). For both methods of obtaining reference data,
aerial orthophotos were used as input images. Additionally, very high resolution
satellite images were used for machine learning-based classification.

4.2.3.1 Manual Digitisation

Based on aerial orthophotos acquired on 26 June 2015, we manually delineated three
land cover classes — gravel, vegetation, water —, and shade for ten non-contiguous
areas along the study river section, totalling 0.8 km2 The scale of digitisation was
1:1500. The digitisation required approximately eight operator hours in total.

4.2.3.2 Machine Learning-Based Classification

Supervised ML-based classification was also used to provide the reference data.
Training samples were selected from areas with uniform land cover based on either
aerial orthophotos or VHR satellite images. We compared the Random Forest (RF) and
Support Vector Machine (SVM) classification algorithms. For classification based on
RF, 2000 training samples in the form of random pixels were selected from the
predefined areas with uniform land cover. Classification models with 500 decision
trees and with 1000 decision trees were built for comparison. For the SVM, a kernel
with radial basis function was chosen. Again, two different models were tested, one
based on 1000 training samples and a second based on 2000 training samples. Model
training and image classification were performed in the R programming language (R
Core Team, 2021) using the packages randomForest (Liaw and Wiener, 2002) and
e1071 (Meyer et al,, 2021). Based on the four classification models described above,
we produced land cover maps of the water lands in the study area from aerial
orthophotos and VHR satellite images.

We compared the different area-wise reference datasets based on the detected
presence of the land cover classes of interest (Figure 10). The area classified by ML
was cropped to the extent covered by manual digitisation so that exactly the same
area was considered. The classification methods based on ML performed very
similarly, with differences between the various results within 1.5%. The largest
difference was recorded for the vegetation class, which was also the most widely
represented in the analysed area.
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Figure 10:Presence of the different land cover classes of interest in the reference datasets
considered.

Compared to manual digitisation, ML-based classification performed worst in
classifying water, which was under-detected. Shade was also under-detected with
the ML-based method, while gravel and vegetation were over-detected. Oversizing
of river bar areas is also in line with existing literature (Kryniecka and Magnuszewski,
2021). One possible reason for the misclassifications of gravel is that shallow water
areas have a very similar spectral signal to gravel because the spectral signal of gravel
from the riverbed can pass through clear water and be recorded by the sensor.
Manual classification did not classify single pixels, but took into account connected
land cover areas and was therefore not influenced by the reflectances of single pixels
in shallow water. As for shade, its under-detection with ML-based methods may be
explained by the fact that shade can also be found within vegetated areas in small
extents and so it could be falsely included within the vegetation class by the ML
algorithms. Nevertheless, the manual and the ML-based classifications give
comparable results. The ML-based classification will be used for validation in other
areas on the Soca, Sava, and Vjosa rivers, because it is faster (Schwarz et al., 2003;
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lIsever and Unsalan, 2013; Rastiveis et al., 2013; Holbling et al., 2017) and produces
more consistent results (Tarko et al., 2018; Kraff et al., 2020).

As all of the ML-based classifications gave very similar results, the main decision
point for selecting one of them for further work was speed (computing time). We
measured the times required for model training and image classification of all tested
configurations (Table 2). Classification of an area of 109.7 km? with a spatial
resolution of 0.5 m took over three hours. The fastest method was the one using a RF
algorithm with 500 trees, therefore this configuration was selected for further
reference classifications.

Table 2: Computing time for training different machine learning-based classification models and
classification of an orthophoto with a spatial resolution of 0.5 m and an area of 109.7 km?.

model RF 500 RF 1000 SVM 1000 SVM 2000
trees trees samples samples
train time (h:min:s) 0:00:56 0:01:35 0:11:33 0:38:31
classification time (h:min:s) 3:06:05 3:12:18 3:01:05 5:48:08
total time (h:min:s) 3:07:01 3:13:53 3:12:38 6:26:39

4.2.3.3 Spatial Resolution of Reference Data

Aerial orthophotos are available with a spatial resolution of 0.25 m. They need to be
classified to be used as reference data, which is a computationally intensive process.
However, orthophotos are also available at a 0.5 m resolution. We were interested in
whether the different spatial resolutions give comparable results in the validation of
the fraction maps. We therefore used identical training samples and classification
algorithms, but applied them to reference data with different resolutions.

We then calculated the presence of each land cover class of interest in the
reference datasets with different spatial resolutions (Figure 11). Classification of 0.5 m
images was twice as fast as that of 0.25 m images. We found that the differences in
the presence of land cover classes between the two maps were within 0.32% and
thus can be considered negligible. Based on these findings, 0.5 m reference data can
be recommended for validation.

Itis important to note that data used for ground truth cannot be considered error-
free (Carlotto, 2009). An accuracy assessment of the reference data for the year 2015
showed an overall accuracy of 98%. This is reasonable, since we are only considering
three land cover classes with very different spectral characteristics. The accuracy of
reference data is thus sufficient for further analysis. Nevertheless, we must keep in
mind that ground truth contains errors and can be a source of uncertainty when
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benchmarking different results (Chehdi and Cariou, 2019). Indeed, claims have been
made that the term “ground truth” is inappropriate in itself and should be replaced
by terms such as “surface observations” or “field measurement” (Woodhouse, 2021).
We use another of terms proposed in the literature — “reference data”.
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. gravel
. vegetation

water
20+

land cover class presence (%)

0.25m 05m
reference data spatial resolution

Figure 11:Presence of the land cover classes of interest on reference datasets with different spatial
resolutions.

4.2.4 Comparison of pixel-based and area-based validation

We compared the results of pixel-based and area-based validation in terms of which
fraction map achieved the highest accuracy for each of the land cover classes
considered (Table 3). Five different land cover fraction maps were considered, each
based on different input data:

- aSentinel-2 image with endmembers selected on the same image,

- aSentinel-2 image with endmembers transferred from a different image,
- alandsat 7 image with endmembers selected on the same image,

- alandsat 8 image with endmembers selected on the same image, and

- alandsat 8 image with endmembers transferred from a different image.
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Table 3: Comparison of pixel-based and area-based validation results. The most accurate
fraction maps for each land cover class are given.

most accurate fraction map
land cover class

pixel-based* area-based**
gravel Sentinel-2 - same image endmembers Sentinel-2 - transferred endmembers
vegetation Sentinel-2 - transferred endmembers  Sentinel-2 - same image endmembers
water Sentinel-2 - same image endmembers Sentinel-2 - transferred endmembers
total Sentinel-2 - transferred endmembers  Sentinel-2 - transferred endmembers

* automatic endmember selection
** shade areas excluded from samples

Both validation methods indicate that the most accurate map overall is the one based
on the Sentinel-2 image with transferred endmembers. The transferred endmembers
consist of two endmembers describing water reflectance, resulting in better
separation between gravel and water and consequently more accurate fraction
maps. As both validation methods give similar results, they are used interchangeably
in subsequent tests.

4.2.5 Conclusions on validation method

The test area on the Soca between the settlements of Kobarid and Tolmin is a suitable
study area for the development of gravel mapping methods. Sufficient reference and
auxiliary data are available to allow validation of the method and interpretation of
the results. Two different validation methods were developed, one based on
comparing pixel-wise land cover fractions and the other evaluating the presence of
different land cover classes in the study area as a whole. The pixel-based validation
method was used first and the area-based method was developed later due to
concerns related with the geometric accuracy of satellite images. The two validation
methods produced similar results in selecting the most accurate fraction maps.
Therefore, the different methods and configurations in the next chapters are
validated using both proposed methods interchangeably. We followed a pragmatic
approach where the tests done at the beginning of the study were validated using
the pixel-based method while tests conducted later were validated using the area-
based method.

The next chapter focuses on the investigation of satellite image properties that
affect the accuracy of the SMA.
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4.3 Characteristics of satellite images used

Together with endmember spectral signatures, satellite images are the main input to
the SMA (Figure 12). Providing images with suitable properties is therefore key for
accurate results. We first examined the differences between Sentinel-2 and Landsat,
two of the most commonly used optical EO systems. We then tested the influence of
different pre-processing corrections and the contribution of different spatial
resolutions of the input satellite images. Finally, we explored the influence of
complementing the spectral bands of the satellite images with different spectral
indices.

INPUT IMAGE CHARACTERISTICS

> remote sensing system
- Sentinel-2
- Landsat

> geometric accuracy

— radiometric corrections

- top-of-atmosphere
- atmospheric corrections
- topographic corrections

— spatial resolution

- Sentinel-2, 10 m, original
- Sentinel-2, 10 m, super resolution
- Sentinel-2, 20 m, original

‘> spectral indices

Figure 12:Satellite images used.

4.3.1 Remote sensing systems used as sources of satellite
images

Sentinel-2 and Landsat have comparable spectral characteristics. However, an
important difference between the two systems is their temporal resolution as
outlined in chapter 4.1.1; Landsat provides longer time series starting in 1982 with a
revisit time of 16 days, while Sentinel-2 has denser time series with a revisit time of 5
days but only since 2017. In gravel bar monitoring, long time series enable insights
into the impacts of many different flood, rockslide, infrastructure interventions, and
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other events in the past which can inform about the possible impacts of similar
events in the future. On the other hand, denser time series make it possible to
observe the process dynamics in greater details and closer to the real time. We
investigated whether data from the two remote sensing systems produce
comparable results and if the outputs can be used interchangeably to take
advantage of the most favourable characteristic of each system.

Two Sentinel-2 images, a Landsat 7, and a Landsat 8 image were used for the
comparison. The Sentinel-2 images were acquired on 11 July 2015 and on 23 April
2020, the Landsat 7 was acquired on 9 July 2015, and the Landsat 8 image was
acquired on 25 April 2020 (Figure 13).

Landsat 8, 25'4:2020

Figure 13:Overview of the satellite images used in the analysis; true colour composites. Data
source: ESA, 2021, U. S. Geological Survey, 2021a, 2021b.
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The endmembers used for SMA of the different images were calculated based on
the average reflectance values of pure pixels. Pixel selection was done manually,
using reference data to ensure pixel purity. Four pixels were used to calculate the
gravel endmember, nine for surface water, and 20 for vegetation. The number of
pixels used was identical for the different images and was limited by the number of
pure pixels that could be detected on the Landsat images. The Landsat images have
a lower spatial resolution than the Sentinel-2 images and therefore fewer pure pixels.

The resulting land cover fraction maps were validated with the pixel-wise
method. Aerial orthophotos, acquired on 26 June 2015, were used to validate the
2015 maps, while field mapping was used as reference for the 2020 maps.

The results indicate that comparable fraction map accuracies can be achieved
using Sentinel-2, Landsat 7, and Landsat 8 images (Table 4). We report the MAE as the
selected accuracy measure for land cover fraction maps (Schug et al., 2018; Suess et
al,, 2018). The MAE is less than 0.1 for most of the land cover classes of interest on the
majority of images which means that the land cover fractions are correct within +
10%. Vegetation is the most problematic, with MAE of 0.11 on all maps. Vegetation
in the study area occurs in many different forms. We attempted to account for this
variability by selecting a large number of different pixels from which the vegetation
endmember was computed. However, certain vegetation types are still spectrally
more similar to water or gravel and are therefore misclassified. Furthermore, it is
apparent that the fraction maps based on Landsat 7 achieve the lowest accuracies.
Landsat 7 is the oldest of the three remote sensing systems considered, imaging
since April 1999. Compared to Landsat 8, it has a lower radiometric resolution and
wider spectral bands (Irons et al., 2012; Roy et al,, 2016), leading to larger errors in
spectral analysis. Nevertheless, in all cases gravel fractions are mapped very
successfully (Table 4), which means that all tested remote sensing systems can be
used for monitoring gravel bars.

Table 4:  Pixel-wise mean absolute error of land cover fraction maps per land cover class for
different analysed satellite images using manually selected endmembers. The best results per land
cover class in bold.

land cover class Landsat 7, Sentinel-2, Landsat8, Sentinel-2,
9.7.2015 11.7.2015 25.4.2020 23.4.2020

gravel 0.087 0.078 0.069 0.095
vegetation 0.114 0.111 0.108 0.108
water 0.124 0.082 0.074 0.080
total 0.108 0.090 0.084 0.094
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4.3.2 Geometric accuracy of the input satellite images

The geometric quality of images is important information in time series analysis. Poor
geometric quality and misalignment of images may cause the detection of false
changes which are not a results of actual changes on the Earth’s surface, but appear
because of a shift in location. It is therefore crucial to ensure we are always observing
the same location when monitoring processes with EO data. Sentinel-2 Data Product
Quality Reports state that the absolute geolocation performance is below 11 m for
95% of images and the multi-temporal geometric performance is around 12 m (Clerc
and MPCTeam, 2021). This is expected to improve by applying geometric refinement
with the use of tie points from the Global Reference Image (Clerc and MPC Team,
2021; Dechoz et al., 2015). The additional refinement step has not yet been deployed
operationally, but preliminary test show that the absolute geolocation of images will
be better than 8 m and that multi-temporal co-registration accuracy from different
orbits will surpass 5 m (Clerc and MPC Team, 2021). However, these values refer to a
global estimate and not many investigations examine the actual geometric
performance of the images used. Thus, we conducted several tests to study the
geometric performance of Sentinel-2 images and investigated if there are any factors
that have an important influence on the geometric accuracy.

We conducted the analysis using images processed to Level-1C. Three study areas
were selected in Kenya, Cyprus, and Slovenia (Figure 14). In each study area, between
10 and 20 reference points were selected which could be clearly seen and were
assumed to remain stable during the observation period. Reference points were
mostly crossroads and were verified using VHR data (Bing, 2021; OpenStreetMap
contributors, 2021; Surveying and Mapping Authority of the Republic of Slovenia,
2021e). All Sentinel-2 images of the study areas with at most 10% cloud cover
acquired between 1 January 2017 and 31 December 2020 were analysed. In total, 395
images were analysed in Kenya, 444 in Cyprus, and 264 in Slovenia.

Geometric shifts in images were analysed by registering all images to a selected
reference image. An image acquired in April 2020 was selected as reference in all
study areas. The visible spectral bands were combined in a single image which was
then used in the analyses. The registration of different images was done using
unnormalised cross-correlation (Guizar-Sicairos et al., 2008) as implemented in the
Python package scikit-image (version 0.18.3) (van der Walt et al., 2014). The resulting
shifts in the x- and y-directions were plotted for each study area and the resulting
average shifts were calculated (Figure 15).
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Figure 14:Study areas selected for the analyses of the geometric accuracy of Sentinel-2 images.
Basemap: Bing, 2021.

The results show that average shifts of Sentinel-2 images are —2.88 m in the x-
direction and —0.02 m in the y-direction. Notably, images acquired by the Sentinel-
2B satellite are shifted more than those acquired by the Sentinel-2A. Average shifts
on Sentinel-2B images across the different study areas are —4.56 m in the x-direction
and 0.91 m in the y-direction compared to —0.86 m in the x-direction and —0.46 m in
the y-direction observed on Sentinel-2A images. Slight differences can be seen
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between the different study areas, but the overall trends are the same. We found the
accuracies to be higher than those reported in the literature which range from
maximum shifts of 6 m (Vajsova and Astrand, 2015), to 13 m (Pandzi¢ et al., 2016), and
14m (Rufin et al, 2021). Importantly, however, existing studies have not
differentiated between the Sentinel-2 satellites or in cases when they did, the
reported differences were very small - within 2.5 m (Doshi et al., 2020). Despite the
shifts that we found, we concluded that they are small and therefore we decided
against re-aligning the images in subsequent analyses.
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Figure 15:Geometric shifts of Sentinel-2 images for the selected study areas.
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4.3.3 Influence of radiometric corrections on fraction map
accuracy

To reduce the effects of atmosphere and topography on reflectance values,
radiometric corrections are applied to satellite images before the analysis. Various
pre-processing functions for atmospheric and topographic corrections can be used
for this purpose. We investigated how these image pre-processing affects the
accuracy of the SMA. To compare and determine the stability of results, tests were
performed using two Sentinel-2 images acquired in two different time periods with
different atmospheric and Sun angle characteristics — the summer image, acquired
on 11 July 2015, and the autumn image, acquired on 16 October 2017. The dates of
the images were selected to match the acquisitions of aerial orthophotos which were
used to generate reference data. We validated the maps based on the area covered
by each of the land cover classes of interest by comparing the fraction maps to aerial
orthophotos classified using RF with 2000 samples and 500 trees. The analysis
involved three different levels of pre-processing of the same image:

- uncorrected image (top of atmosphere),
- atmospherically corrected image, and
- topographically corrected image.

Each subsequent pre-processing level included corrections from all previous levels.
Atmospheric corrections were performed by ourselves using the ATCOR programme
(Richter, 1996; Richter et al., 2006; Richter and Schlapfer, 2019). Topographic
corrections were applied with the STORM processing chain which combines physical
models and the Minnaert approach (Pehani et al., 2016; Zaksek et al., 2015).

The results indicate that atmospheric corrections slightly improved the map
accuracy compared to the top of atmosphere reflectance image (Figure 16).
Topographic corrections, on the other hand, introduced additional uncertainty that
led to an increase in map error even compared to the baseline image. In particular,
vegetation and gravel were frequently classified as water on the topographically
corrected image. In subsequent analysis we therefore worked with atmospherically
corrected images. The omission of topographic correction was not problematic
because we focused on flat areas in river valleys, whereas topographic error is most
pronounced on steep slopes.
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Figure 16:Accuracy of land cover fraction maps based on satellite images with different pre-
processing levels.

4.3.4 Contribution of improved spatial resolution of input
satellite images to fraction map accuracy

The size of the pixel defines the size of area for which the land cover presence
fractions are given. We investigated whether improved spatial resolution leads to
more accurate results on an image acquired by the Sentinel-2 system on 11 July 2015.
Of the ten Sentinel-2 spectral bands used in SMA, six are acquired with a 20 m spatial
resolution. In the current pre-processing workflow, the remaining four bands with a
10 m resolution were downsampled to 20 m using bilinear interpolation. The
resulting land cover fraction maps were thus produced with a 20 m spatial resolution.

To test the potential contribution of increasing spatial resolution to improve map
accuracy, we applied the deep learning-based DSen2 algorithm (Lanaras et al., 2018)
to resample the Sentinel-2 bands with a 20 and 60 m spatial resolution to 10 m. All of
the 20 m and 60 m spectral bands are included in the resampling, apart from the
cirrus band (B10) which contains too much noise.
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The improvements gained by resampling were assessed by comparing the results
with two fraction maps based on different input data:

- four spectral bands originally acquired with a 10 m resolution (blue, green,
red, infrared) and

- ten spectral bands with a 20 m resolution.

- Three endmembers for the SMA were selected automatically. The same land
cover classes were chosen as endmembers on all images, namely gravel,
vegetation, and water. With an increase in spatial resolution, the number of
pixels that needed to be spectrally unmixed increased four-fold and so did
the time required for the SMA. On the other hand, increasing the number of
bands included in the SMA did not affect the duration of the SMA (Table 5).

Table 5: Computing time for automatic selection of three endmembers (ASEM) and the spectral
mixture analysis (SMA) using different input images, derived from a Sentinel-2 image, acquired on
11 July 2015. 52 10 m — Sentinel-2 spectral bands acquired with a 10 m spatial resolution; S2 supres
- Sentinel-2 image resampled to 10 m with the DSen2 algorithm; S2 20 m - Sentinel-2 spectral
bands acquired with a 20 m spatial resolution, and the spectral bands acquired with a 10 m spatial
resolution resampled to 20 m with bilinear interpolation.

image number  numberof ASEM SMA total
of bands pixels (min:s)  (min:s)  (min:s)
S210m 4 838,000 00:03 11:06  11:09
S2 supres 12 838,000 00:07 10:54  11:01
S220m 10 210,000 00:01 02:35 02:36

Validation of the resulting land cover fraction maps was performed using the pixel-
based method. The reference plot size was adjusted to the map with the coarsest
spatial resolution, i.e., 20 m x 20 m. Comparison with the results based on the four
spectral bands originally acquired in a 10 m resolution showed little or no
improvement in map accuracy (Table 6). Similarly, no improvement in accuracy was
observed when considering fraction maps based on the 20 m bands. Apparently,
increasing the spatial resolution of the images with a deep learning algorithm did
not produce sufficient supplementary information that could lead to a more
successful spectral analysis.

The pixel is still the basic unit for which land cover fractions are reported. We
expected that by considering input satellite images with a higher spatial resolution
we could improve the thematic accuracy of the produced fraction maps. However,
the comparison of Landsat- and Sentinel-2-based maps in chapter 3.3.1 and
Sentinel-2 10 m- and 20 m-based maps in the current chapter make it apparent that
spectral resolution of input satellite images is more crucial for fraction map accuracy
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than spatial resolution. Because of the additional disadvantage of the high time
intensity first for the super-resolution and then for the longer SMA, we decided to
use the 20 m images in subsequent analysis.

Table 6:  Mean absolute error of land cover fraction maps from different images, derived from a
Sentinel-2 image, acquired on 11 July 2015. Endmembers selected automatically.

image baseline-10m baseline-20m super-resolution
number of bands 4 10 12
spatial resolution (m) 10 20 10
gravel 0.140 0.110 0.138
vegetation 0.166 0.161 0.193
water 0.262 0.225 0.270
total 0.189 0.165 0.200

4.3.5 Using spectral indices to improve fraction map accuracy

To increase the separability between the different land cover classes of interest, we
calculated several spectral indices and included them along spectral bands
reflectance values in the endmember selection process. We tested the contribution
of the following spectral indices (Table 7):

- Anthocyanin Reflectance Index 1 (ARI1),

- Burn Area Index (BAI),

- Band Ration for Built-up Areas (BRBA),

- Enhanced Vegetation Index (EVI),

- Modified Normalised Difference Water Index (MNDWI),
- Modified Soil Adjusted Vegetation Index 2 (MSAVI2),

- Normalised Difference Infrared Index (NDII),

- Normalised Difference Vegetation Index (NDVI),

- NDVI multiplied by green band (NDVI-GREEN),

- Normalised Difference Water Index (NDWI),

- Normalised Pigment Chlorophyll Ratio Index (NPCRI), and
- Plant Senescence Reflectance Index (PSRI).

The potential contribution of each index to improved land cover separability was first
assessed by visual comparison with reference data. We used Sentinel-2 images to test
the contribution of spectral indices to SMA accuracy. Images from 2015, 2017, and
2020 were used, in line with the availability of reference data. For brevity, only the
results based on the image acquired on 23 April 2020 and validated with field
mapping data are shown.
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Table 7:  Spectral indices selected to improve the separability of land cover classes.

name formula reference
Anthocyanin Reflectance Index 1 ARIL= —1 _ 1 Gitelson et al, 2009
(ARIT) GREEN  RED EDGE

Burn Area Index (BAI) BAI = ! Martin, 1998 cited in

(0.1-RED)?+(0.06—NIR)?

Chuviecoetal., 2002

Band Ratio for Built-up Areas RED
(BRBA) BRBA = SWIR Wagqar et al., 2012
: NIR—RED Huete et al, 1999,
Enhanced Vegetation Index (EVI)  EVI = 2.5 NIRTERED—7 SBLUET1 1997
Modified Normalised Difference GREEN—SWIR
= Duetal, 2016
Water Index (MNDWI) MNDWI = GREENTSWIR ueta
MSAVI2 =
Modified Soil Adjusted 5 Qietal, 1994
Vegetation Index (MSAVI2) 2SWIR+1— J (2SWIR+1)“—8(SWIR—NIR) fetal,
2
Normalised Difference Infrared NIR-SWIR
LAY 1
Index (NDII) NDII' = Nigrswir Gao, 1996
Normalised Difference NIR—RED
= = Tucker, 1979
Vegetation Index (NDVI) Npvi NIR+RED ucker.
NDVI multiplied by green band _ (NIR—RED &
(NDVI-GREEN) NDVIGREEN = (m) * GREEN Svab Lenarcic, 2018

Normalised Difference Water GREEN—NIR
Index (NDWI) NDWI = CREENTNIR McFeeters, 1996
Normalised Pigment Chlorophyll NPCRI = RED—BLUE Periuelas et al,
Ratio Index (NPCRI) ~ RED+BLUE 1993, 1994
Plant Senescence Reflectance RED—BLUE

bt Merzlyak 1,1
Index (PSRI) PSRI REDEDGE erzlyak et al., 1999

Following these preliminary tests, a subset of spectral indices was chosen for further
analysis. This subset of indices consisted of EVI, MNDWI, MSAVI2, NDII, NDVI, NDVI-
GREEN, NDWI, and NPCRI. The final selection was made from indices which led to an
increase in fraction map accuracy (Table 8).
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Table 8: Improvement of the spectral mixture analysis by using spectral indices. Mean absolute
error of fraction maps based on different input data derived from a Sentinel-2 image, acquired on
23 April 2020. Endmembers selected automatically.

image baseline all indices selected indices
number of indices 0 8 5
gravel 0.062 0.058 0.056
vegetation 0.182 0.124 0.120
water 0.198 0.125 0.124
total 0.144 0.102 0.100
A
A
A A gravel
0.54 vegetation 1
A vegetation 2
water
A N A
0.04
A
A
-0.5+
A
A
MSAVI2 EVI NDVI NDWI MNDWI
index

Figure 17:Values of the selected set of indices for the land cover classes of interest. Connecting lines
are added for easier identification of values referring to the same land cover class.

We also selected indices with values which showed high separability between the
land cover classes of interest (Figure 17). The presented endmembers were selected
automatically. Two vegetation endmembers were selected before water and gravel
were selected. Evidently, three endmembers were not sufficient to describe all of the
land cover classes of interest. In further analysis, the fraction maps based on the two
vegetation endmembers were added in subsequent analysis to result in a single
vegetation fraction map. Index values for the different land cover classes of interest
are similar to those in existing literature (Wu, 2004; Afrasinei et al., 2018). In particular,
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gravel bars have similar spectral index values to built-up areas (Xi et al., 2019). The
selected spectral indices, which were thus chosen to complement the reflectance of
the spectral bands, are EVI, MSAVI2, NDVI, NDWI, and MNDWI.

4.3.6 Conclusions on input satellite images

Tests regarding the input satellite images for a successful SMA to map fluvial gravel
bars led to four important findings for further analysis:

- Both Sentinel-2 and Landsat 8 images can be successfully used to produce
accurate land cover fraction maps. Maps based on Landsat 7 have slightly
lower accuracy, but still sufficient to provide meaningful information.

- Atmospheric correction improves the accuracy of fraction maps.
Topographic correction introduces additional uncertainties and is therefore
not recommended.

- ForSentinel-2, increasing the spatial and spectral resolution of input images
to 10 m and 12 spectral bands using a deep neural network does not
improve the accuracy of fraction maps compared to the baseline images
with a 20 m spatial resolution and 10 spectral bands.

- Theinclusion of spectral indices as input data for the SMA in addition to the
spectral band information improves fraction map accuracies. The selected
indices which lead to the highest separability between the land cover
classes of interest and the most accurate fraction maps are EVI, MSAVI2,
NDVI, NDWI, and MNDWI.

The next chapter explores the different methods and settings for endmember
selection.

4.4 Endmember selection

Endmembers are crucial for a successful SMA. We explored the impacts of different
endmember selection strategies, namely a manual or automatic method, various
numbers of selected endmembers, and diverse numbers of land cover classes for the
endmembers to represent. Finally, we assessed the transferability of endmembers,
i.e., the possibility of selecting endmembers on one image and using the same
endmembers for the SMA of another image (Figure 18).
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ENDMEMBER SELECTION

manual or automatic

number of endmembers

shade as a separate endmember
transferability of endmembers between images

Figure 18:The endmember selection method.

4,41 Manual or automatic endmember selection

The manual endmember selection method is based on the use of reference data with
a higher spatial resolution than the analysed satellite images to choose pure pixels
where only a single land cover class is present. Several different pure pixels can be
selected for one land cover class. Their spectral signatures and index values are
combined by taking the average value, thus obtaining manual endmembers.

In the testing phase, we wanted to use the most representative and the best
possible endmembers. At the same time, the method had to be comparable across
different input satellite images. Therefore, we started with manual endmember
selection on Landsat images, which have a lower spatial resolution and thus a lower
probability of having pure pixels containing a single land cover class. For the
endmember calculation, we selected all available spectrally pure pixels. This
amounted to four pixels for gravel, twenty for vegetation, and nine for water. The
same number of pixels was chosen for manual selection of endmembers on
Sentinel-2 images. To increase comparability between the two different remote
sensing systems, we selected endmembers at the same locations in each case.

Automatic endmember selection was done with an implementation of the N-
FINDR algorithm in the Python package pysptools (version 0.15.0) (Therien, 2018). We
started by defining three different endmembers. If the selected endmembers did not
represent the three land cover classes of interest, we increased the number of
endmembers until all desired land cover classes were represented with at least one
endmember.

The two different endmember selection methods were compared on four satellite
images: two Sentinel-2, one Landsat 7, and one Landsat 8. The results indicate that
manually selected endmembers lead to more accurate land cover fraction maps
(Table 9). Nevertheless, the accuracy achieved by using automatically selected
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endmembers is within 0.05 of that achieved by manually selected endmembers.
Importantly, gravel is mapped very successfully with both manually and
automatically selected endmembers with little or no difference between the two
selection methods.

Table 9:  Pixel-wise mean absolute error per land cover class for different images analysed using
different endmember selection methods. Best results per land cover class in bold.

land cover class Landsat 7,9.7.2015 Sentinel-2, 11.7.2015
manual automatic manual automatic
gravel 0.087 0.094 0.078 0.082
vegetation 0.114 0.140 0.111 0.139
water 0.124 0.141 0.082 0.097
total 0.108 0.125 0.090 0.106

land cover class Landsat 8, 25.4.2020 Sentinel-2, 23.4.2020

manual automatic manual automatic
gravel 0.069 0.071 0.095 0.124
vegetation 0.108 0.124 0.108 0.157
water 0.074 0.097 0.080 0.098
total 0.084 0.097 0.094 0.126

When observing the errors at pixel level, it is clear that on a single pixel, the same
land cover classes are frequently problematic for both the manually and the
automatically selected pixels. Likewise, the direction and magnitude of the error are
often very similar across endmember selection methods. Regarding the confusion of
land cover classes, common misclassifications include the labelling of shallow water
as gravel. This is not possible to overcome and has important implications, as the
Soca is rarely over 2m deep. The shallow depth means that electromagnetic
radiation reaches the gravel riverbed, leading to reflectance values similar to surface
gravel. Overall, gravel is mostly over-estimated, vegetation is under-estimated, while
results for the water class are mixed.

The cumulative distribution functions have similar shapes regardless of the
method used to select endmembers and the input satellite image (Figure 19).
Nevertheless, the errors for manual endmember selection are generally closer to 0
than the errors for automatic endmember selection. Vegetation is the most
problematic land cover class with the largest errors. The vegetation fraction is under-
estimated in most cases. Water is generally well detected, with error values very close
to 0, except on the Landsat 7 image. The Sentinel-2 image, acquired in 2020 and
analysed with automatically selected endmembers, has the largest error, especially
for vegetation and gravel.
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Figure 19:Cumulative distribution functions of pixel-wise errors per land cover class for different
analysed images and different endmember selection methods.

This is also evident when comparing the average errors of the fraction maps (Tables
10 and 11). The errors for gravel are the lowest, except for the Sentinel-2 image
acquired in 2020. The standard deviation of the errors is comparable for all land cover
classes considered. However, in all analysed images, the standard deviation of errors
is the lowest for gravel, which is important and beneficial for our study.
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Table 10: Pixel-wise mean error with standard deviation per land cover class for different analysed
images acquired in 2015 using different endmember selection methods.

land cover class Landsat 7,9.7.2015 Sentinel-2, 11.7.2015
manual automatic manual automatic
gravel -0.018 £0.140 0.002 +£0.134 0.013+£0.127 0.006 +0.132
vegetation 0.016 +0.165 -0.042 +0.177 0.001+£0.174 0.000 +0.189
water 0.002 +0.182 0.040 + 0.181 —0.015+0.159 —0.006 +0.163

Table 11: Pixel-wise mean error with standard deviation per land cover class for different analysed
images acquired in 2020 using different endmember selection methods.

land cover class Landsat 8, 25.4.2020 Sentinel-2, 23.4.2020
manual automatic manual automatic
gravel 0.005 +0.109 0.003 +0.134 0.062 £0.128 0.100+£0.113
vegetation 0.022 +0.172 0.061+£0.177 —-0.038 £0.150 -0.070+£0.174
water —0.026 +0.149 —0.064 +0.181 —0.026 +0.133 —0.033£0.153

4.4.2 Different numbers of selected endmembers

Automatic endmember selection may not result in the desired number of land cover
classes when selecting the exact number of endmembers equal to the number of
land cover classes of interest. In such cases, we increased the number of selected
endmembers until all desired land cover classes were represented. We investigated
whether increasing the number of endmembers leads to more accurate results
covering the full land cover diversity, or whether endmembers tend to cluster around
certain values. Such clustering would indicate that very similar endmembers are
being selected.

The chosen algorithm for automatic endmember selection is implemented to
allow the calculation of a maximum of 17 different endmembers. We started with the
selection of three endmembers and increased this in steps of two up to 17. We looked
for a possible clustering with plots of endmember values in selected spectral bands
and indices (Figures 20 and 21).

A visual inspection of the plots of endmember values shows that clustering starts
at five automatically selected endmembers. As the number of endmembers is
increased, the newly selected values are somewhere between the extreme values
already selected with a set of five or even three endmembers.
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Figure 20:Values for all spectral bands and indices considered for different numbers of
automatically selected endmembers. The dashed horizontal line shows the average value for all
automatically selected endmembers. The solid horizontal line shows the values for manually
selected endmembers.
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Figure 21:Values for selected spectral bands reflectance and indices for different numbers of
automatically selected endmembers. The displayed bands and indices show the highest
separability between the different land cover classes. The dashed horizontal line shows the average
value of all automatically selected endmembers. The solid horizontal line shows the values for
manually selected endmembers.

4.4.3 Considering shade as a separate endmember

Shade is a frequently selected endmember in SMA studies (e.g., Adams, 1995;
Dennison and Roberts, 2003; Amaral et al., 2015). The reflectance of shaded pixels
can be similar to that of surface water, so the inclusion of a shade endmember has
been shown to be particularly important when mapping water (Liu et al., 2020). Areas
detected as shade would then be masked out from the analysis. We therefore
conducted a series of tests with shade as an additional endmember. Sentinel-2
satellite images were used for the analysis. Two time periods were considered, early
summer 2015 and mid-autumn 2017. The selected time periods were primarily
related to the availability of reference data, but also allowed comparison of the
effects of different Sun angles and the consequent presence of shade. The resulting
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fraction maps were validated using the area-based approach by comparing the
presence of each land cover class on the fraction map to that on the reference data
(Figure 22).

a) 11.7. 2015 b) 16.10. 2017

water

vegetation

Shade _ -
revel - I

-10 0 10 -0 0 10
absolute difference in land cover class presence (%)

Figure 22: Absolute difference in the presence of land cover classes between the reference data and
the satellite image-based land cover fraction map with shade as a separate endmember.

The results indicate that the inclusion of shade as an additional endmember does not
lead to more accurate fraction maps. Evidently, shade is a difficult class to map, as its
detection accuracy is frequently the lowest of the classes considered. In both fraction
maps examined, the presence of shade is over-estimated. This is interesting because
one of the reference images was acquired earlier in the day and the other later in the
day than the analysed satellite images (Table 12). The over-estimation of shade is
apparently larger than the variability of shade presence due to the different Sun
angles.

Table 12: Acquisition times for the remote sensing data considered in the shade analysis. Data
source: ESA, 2021; Surveying and Mapping Authority of the Republic of Slovenia, 2021e.

image ID use image system acquisition date acquisition time (UTC)
1 input Sentinel-2 11.07.2015 10:00
2 reference orthophoto 26.05.2015 07:29
3 input Sentinel-2 16.10.2017 10:16
4 reference orthophoto 14.10.2017 11:51

In addition to considering shade as a separate land cover class, we explored the
impact of taking it into account as part of the training samples for other land cover
classes. We included shade in the training samples for classifying the reference data
to better represent the true spectral composition of the land cover class. The already
acquired training samples for shade were reclassified to other land cover classes of
interest, or discarded if they contained mixed land cover. Baseline reference data
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were produced from the remaining land cover classes only, excluding all shade
training samples. Results were validated using the area-based method (Figure 23).

a) shade incorporated b) shade excluded

16.10.2017

satellite image used

11.7.2015

-5 0 5 -5 0 5
absolute difference in land cover class presence (%)

water vegetation . gravel

Figure 23: Absolute difference in the presence of land cover classes between the reference data and
the satellite image-based land cover fraction map. For the reference data, shade is included in the
training samples for other land cover classes (left) or completely excluded from the training
samples (right).

The fraction maps that do not include shade as a separate endmember are more
accurate than those that do. The best results are obtained when shade is completely
excluded from the training samples for the reference data. Rather than providing a
better representation of the land cover class of interest, shade appears to introduce
additional variability that leads to confusion between classes and consequently
lower map accuracy. When selecting training samples for reference data, it is
therefore advisable to select only pixels that do not contain shade. In our case, the
selection was manual so it was easily possible to exclude shade by visual
interpretation. If applying an automatic training sample selection method, potential
areas of shade can be masked out in advance, for example using a digital elevation
model for terrain shadow and a buffer around forested areas for vegetation shade.
Despite excluding shade from training samples, subsequent analysis classifies land
cover classes with a satisfactory accuracy, even if they are covered with shade.
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4.4.4 Transferability of endmembers selected on one image for
the analysis of different images

We explored the possibility of applying a set of endmembers selected on one satellite
image for the SMA of another image acquired with the same remote sensing system.
In choosing the satellite images to be considered, we followed the availability of
reference data, both for the selection of endmembers and for the validation of
fraction maps. Thus, for testing the Sentinel-2 images we used endmembers selected
on an image from 23 April 2020 to unmix an image from 11 July 2015 (Table 13).

Table 13: Class-wise mean absolute error withendmembers (EM) chosen on the same or a different
image, for images acquired with Sentinel-2. Values are deviations from averages. M — manual EM
selection method; A — automatic EM selection method. Best results per land cover class in bold.

acquisition date of

! 11.07.2015 11.07.2015  23.04.2020  23.04.2020
analysed image o

acquisition date of € 11.07.2015 23.04.2020  11.07.2015  23.04.2020
EM selection image g

EM selection method © ] A M A M A M A
gravel 0.093 -0.015 -0.011 -0.013 0011 -0.009 0.005 0.002 0.030
vegetation 0.136 -0.025 0.004 -0.037 -0010 0024 0.052 -0.028 0.021
water 0093 -0011 0.004 -0.014 -0011 0023 0019 -0.014 0.005
total 0108 -0.017 -0.001 -0.021 -0.003 0013 0.025 -0.013 0.019

We also considered the Landsat 8 system, where endmembers selected on an image
from 25 April 2020 were taken for the SMA of an image from 17 July 2015 (Table 14).
Endmembers were selected using both the manual and automatic methods. The
same number of endmembers was considered for both selection methods. For
Sentinel-2, we selected one endmember for gravel, two for vegetation, and two for
water; for Landsat 8, there was one endmember for gravel, three for vegetation, and
two for water.

The results indicate that the SMA can achieve high accuracy with transferred
endmembers. Transferred endmembers can even lead to better results than those
selected on the analysed image. The transfer of endmember is successful for all land
cover classes considered. Mapping accuracy changes the least for gravel endmember
transfer. Transfer of water endmembers is the most uncertain and results in the
largest differences in mapping accuracy. Both manually and automatically selected
endmembers can be successfully transferred. Differences in accuracies due to the
transfer of endmembers are smaller when using manually selected endmembers.
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Table 14: Class-wise mean absolute error with endmembers (EM) chosen on the same or a different
image, for images acquired with Landsat 8. M - manual EM selection method; A — automatic EM
selection method. Best results per land cover class in bold.

acquisition date of
analysed image
acquisition date of
EM selection image
EM selection method

17.07.2015 17.07.2015 25.04.2020 25.04. 2020

17.07.2015 25.04.2020 17.07.2015 25.04.2020
M A M A M A M A

average

gravel 0.096 -0.022 0.019 -0.017 -0.001 -0.027 0.100 -0.027 -0.025
vegetation 0.132 -0.035 0.101 -0.049 -0.012 -0.009 0.035 -0.024 -0.008
water 0.101 -0.016 0.071 -0.021 0.015 -0.022 0.004 -0.026 -—0.004
total 0.109 -0.024 0.063 -0.029 0.001 -0.019 0.046 -0.026 -0.012
4.4.5 Conclusions on endmember selection

In this chapter, several features related to the selection of endmembers for SMA were
explored and the following observations were made:

Automatically selected endmembers can be used to produce fraction maps
with similar accuracy as manually selected endmembers. However, it is
necessary to inspect the automatically selected endmembers because
various spectral and land cover outliers can inherently be selected as
endmembers.

The optimal total number of endmembers for SMA using multispectral
images is between three and five. Fraction maps based on endmembers
representing the same land cover class can be combined after the SMA.
Increasing the number of automatically selected endmembers to more than
five leads to many different endmembers being considered for a single land
cover class of interest, and thus to redundant information.

The developed method does not allow accurate detection of shade. On the
other hand, the inclusion of shade pixels in other land cover classes does not
seem to affect the accuracy of the fraction maps.

In the study area during the leaf-on season, the endmembers selected on
one satellite image can be successfully used for the SMA of another satellite
image acquired with the same remote sensing system.

Having established the endmember selection process, the next section presents the
resulting land cover fraction maps and compares their accuracy to the accuracy of
land cover maps produced using a hard classification method.
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4.5 Softimage classification

In this section, the fraction maps produced using SMA are presented. The maps for
different remote sensing systems are shown and compared with a hard classification
method using the spectral angle mapper (SAM) (Kruse et al., 1993).

LAND COVER CLASSIFICATION

> fraction maps - SMA

- Sentinel-2
- Landsat 7
- Landsat 8

L> radiometric corrections

- Sentinel-2
- Landsat 7
- Landsat 8

Figure 24: Soft image classification.

4.5.1 Land cover fraction maps

Using the SMA-based mapping method, we produced land cover fraction maps for
the three classes of interest — gravel, vegetation, and water. The maps were
generated using Sentinel-2, Landsat 7, and Landsat 8 satellite images. Upon visual
inspection, the maps look informative, with gravel occurring in rounded, elongated
shapes, resembling gravel bars. Different types of gravel bars can be distinguished,
including those forming in the middle of the river and those developing along the
river bank. Vegetation is detected in the riparian zone along the river banks. Water
surfaces are linear and connected. Comparing the 2015 and 2020 maps, changes in
the size and location of gravel bars are evident. The dynamics of gravel bars confirm
findings from the literature that one type of gravel bar can be transformed into
another over time (Robert, 2003). Fraction maps produced with manually and
automatically selected endmembers show no visible differences (Figure 25).

4.5.2 Comparison of results with hard classification

To additionally assess the proposed soft classification mapping method, we
compared it with a hard classification method. We selected the spectral angle
mapper (SAM) classification (Kruse et al., 1993) based on the existing literature and
because similar input data can be used, making the two methods easy to compare
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(Dennison et al., 2004). The endmember spectral signatures from SMA were used as
input spectra for SAM. We compared the two classification methods based on
accuracy assessment with reference to VHR data and by comparing their respective
error metrics. For SMA, we observed the root-mean-square error (RMSE), which is a
commonly used metric to describe the error of the unmixed signal (Dubovyk et al.,
2015; Somers et al., 2011).

Sentinel 2, 11.7.2015 Sentinel 2, 23.4.2020

Landsat 7, 9.7.2015 Landsat 8, 25.4.2020

B oravel
B water @ 800 m
I vegetation =

Figure 25:Land cover fraction maps for a section of the study area on the Soca River. a) Observed
river section on a true colour orthophoto. Data source: Surveying and Mapping Authority of the
Republic of Slovenia, 2021e. b) - ¢) Resulting fraction maps. Maps produced with manually selected
endmembers shown at the top and maps produced with automatically selected endmembers
shown at the bottom.

For each pixel, the predicted reflectance values are calculated based on the land
cover class fraction determined by the SMA. The RMSE is then computed as the mean
difference between the modelled and observed reflectance. For SAM, we reported
the spectral angle between the reflectance values of a single pixel and the reflectance
values of the endmember representing the land cover class as which that pixel was

73



classified. Thus, a large spectral angle signifies that the spectral signature of the pixel
is very different from the spectral signature of the endmember representing the land
cover class to which the particular pixel was assigned. To compare SMA and SAM,
the two respective error values were extracted for 1000 randomly selected pixels.
Additionally, accuracy was evaluated both pixel-wise and study area-wise. The pixel-
wise assessment was performed for 50 randomly selected map pixels by comparing
their land cover with that obtained based on VHR reference images. In this case, we
expected the soft classification to perform better, as it is able to detect sub-pixel land
cover presence fractions. We also assessed the mapping accuracy for the whole study
area by looking at the detected land cover presence for each class of interest and
comparing it to the reference data.

We present the comparison of error metrics for images acquired in 2020 (Figure
26). The Sentinel-2 and Landsat 8 were compared based on models that use
automatically selected endmembers. The two different endmember selection
methods — manual and automatic — were assessed using Sentinel-2 images. The
results show that the error metrics of the two classification methods are not strongly
linearly correlated. The highest R? value (0.352) was obtained for vegetation on the
Landsat 8 image. This indicates that, for example, a pixel that was accurately classified
by the soft classification was not necessarily classified equally well by the hard
classification. For the Landsat 8 image, water pixels were classified well by SMA, but
not by SAM. Both soft and hard classification produced the most accurate models for
gravel, while water proved the most difficult to classify. Gravel has a uniform spectral
response that can be modelled well even with few samples. Water appears to have a
highly variable spectral response which is difficult to model accurately. One of the
possible reasons for this variability is the non-uniform depth of water, which ranges
from a few centimetres to several metres, leading to the occasional inclusion of the
riverbed in the spectral signal. Additionally, the presence of rapids in the river causes
whitewater, which has a different spectral response than the less turbulent sections
of the river. Regarding the endmember selection methods, manually selected
endmembers lead to smaller spectral angles, but a higher RMSE than automatically
selected endmembers. One explanation for this lies in the inherent characteristics of
the two endmember selection methods. The automatic method searches for
endmembers with the extreme spectral properties and, consequently, the largest
spectral angle relative to the spectral responses of other pixels. The manual method,
on the other hand, uses endmembers that are the average spectra, more similar to a
wider range of other pixels and result in smaller spectral angles. However, the
manually selected endmembers cannot account for the full range of spectral
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variability in the image, which leads to a high RMSE. For gravel, a low RMSE and small
spectral angles were achieved for the models for both Landsat 8 and Sentinel-2. The
hard classification of vegetation was slightly better with Landsat 8, possibly due to
the larger number of spectral bands in the red edge range. Water was modelled with
very large spectral angles for Sentinel-2 and even larger ones for Landsat 8, again
most likely due to the high spectral variability of water surfaces.
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Figure 26: Comparison of RMSE and spectral angle for different land cover classes, remote sensing
systems, and endmember selection methods. Values are for land cover maps based on images from
23 April 2020 (Sentinel-2) and 25 April 2020 (Landsat 8).
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Table 15: Mean absolute error for a pixel-wise comparison of soft and hard classification per land
cover class. The Sentinel-2 image was acquired on 23 April 2020. The Landsat 8 image was acquired
on 25 April 2020. EM - endmember. Best results per land cover class in bold.

image Sentinel-2 Landsat 8
EM selection manual automatic automatic
classification soft hard soft hard soft hard
gravel 0.095 0.254 0.124 0.273 0.071 0.249
vegetation 0.108 0.131 0.157 0.131 0.124 0.193
water 0.080 0.159 0.098 0.180 0.097 0.213
total 0.094 0.181 0.126 0.195 0.097 0.218

Table 16: Comparison of soft and hard classification accuracy based on land cover class presence
in the validation area. Values indicate the difference to reference land cover class presence. The
Sentinel-2 image was acquired on 23 April 2020. The Landsat 8 image was acquired on 25 April
2020. EM - endmember. Best results per land cover class in bold.

image Sentinel-2 Landsat 8

EM selection manual automatic automatic
classification soft hard soft hard soft hard
gravel 0.062 0.190 0.100 0.210 0.003 0.163
vegetation -0.038 —0.045 -0.070 -0.045 0.061 0.042
water -0.026 —0.147 -0.033 -0.167 -0.064 —0.205

The comparison with the hard classification was also made based on the accuracy of
the representation of the actual land cover. For brevity, only results based on images
acquired in 2020 are shown. In situ data from field mapping were used as reference.
First, we assessed the pixel-wise accuracy using MAE (Table 15). As expected, the soft
classification performed much better, because the hard classification is not able to
convey information about land cover at the sub-pixel level.

Next, we examined the values for validating the area-wise presence of land cover
classes (Table 16). The soft classification performed much better in modelling the
presence of gravel and water. No important difference was found between the two
classification methods for vegetation.

4.5.3 Conclusions on image classification

The tests described in the previous chapters can be successfully used to produce land
cover fraction maps. Both pixel-wise and study-area wise validation showed that
such land cover maps derived from the so-called soft classification are more accurate
than maps produced using hard classification methods. The proposed method can
therefore be used for the development of a land cover time series and subsequent
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monitoring of gravel bars. The construction of a land cover time series is presented
in the next section.

4.6 Land cover time series development

In order to track the changes in land cover, we analysed all of the available Sentinel-
2 images for the study area that had less than 10% cloud cover on the whole image.
For clarity, the results of the different endmember selection and data smoothing
methods are presented based only on data for the time period from the years 2019
and 2020 (Figure 27).

LAND COVER TIME SERIES

> endmember selection

- same for all images
- unique for every image
- unique vegetation endmembers

> smoothing vegetation endmembers

- Savitzky-Golay filter
- monthly averages

L> time series smoothing
- Savitzky-Golay filter

Figure 27:Land cover time series development.

4.6.1 Endmember selection for time series analysis

We started with one endmember selected automatically for gravel, one for water,
and two for vegetation. The two fraction maps based on the two vegetation
endmembers were combined after the SMA to obtain a single fraction map of
vegetation presence.

Three approaches were applied to determine the endmembers used for the SMA:

- Same endmembers for all images: the endmembers selected on the image
from 11 July 2015 were used to unmix all images in the time series.

- Unique endmembers for every image: endmembers were selected
separately for each image, but always at the same location. The selected
locations were visually inspected to ensure that the desired land cover was
actually present.
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- Unique vegetation endmembers: only vegetation endmembers were
selected separately for each image. The gravel and water endmembers were
transferred from the image acquired on 11 July 2015.

endmember orthophoto Sentinel-2 sentinel-Z
26.6.2015 11.7.2015 24.11.2020

gravel

vegetation 1

vegetation 2

Figure 28: Pixels selected for unmixing on the first and last Sentinel-2 image of the time series used
and on the aerial orthophoto, acquired on 26 June 2015 (basemap: ESA, 2021; Surveying and
Mapping Authority of the Republic of Slovenia, 2021e).

Land cover class and pixel purity were verified using satellite images and reference
aerial orthophotos (Figure 28). The endmembers were selected automatically using
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the N-FINDR algorithm as described in Chapter 4.4.1 above. They therefore represent
pixels with the most diverse spectral characteristics. In future studies, if the selection
is done manually, in the case of water endmembers, a pixel closer to the centre of the
river flow could be selected. In this way, it would be easier to ensure that water is
indeed present on the selected pixel in different hydrological conditions.

The location of the pixel for which the endmember values were extracted
remained the same for all different endmember selection methods. However, the
endmember values changed in accordance with the image reflectance values. For
the uniquely selected endmembers, the fluctuations of their values over the year
were evident (Figure 29).
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Figure 29: Time series of Sentinel-2 NDVI for the different selected endmembers.

A visual comparison of the time series for the land cover classes of interest shows
similar general trends and plot shapes, but also considerable differences in
magnitude (Figure 30). The time series based on the same endmembers transferred
to all images analysed appears to be the most stable.

The high presence of water in the winter months is not only due to the rise in
water level, but also due to topographic shadow classified as surface water (Figure
31). Topographic shadow is therefore a cause for error. However, as described in
chapter 4.4.3 above, this problem cannot be solved with the available topographic
corrections. Moreover, the accuracy of shade detection with the proposed method is
much lower than the accuracy for other land cover classes of interest. Further shade
detection and elimination is beyond the scope of this work.
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Figure 30: Time series of presence of different land cover classes in the study area based on three
different endmember selection strategies.
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Figure 31:Time series of water presence, based on transferred endmembers, and water level
measured at a gauging station in Kobarid. Data source: Slovenian Environment Agency, 2021b.
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4.6.2 Smoothing vegetation endmembers for time series
analysis

A large variability in the presence of land cover classes is observed in the time series
plots (Figure 30), particularly for vegetation. One possible reason for this could be the
continuous change in spectral characteristics of vegetation due to phenology, and
thus a difficulty in accurately identifying the vegetation land cover class on all
images.
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Figure 32:Time series for the different selected endmembers in the Sentinel-2 band 8A. Vegetation
endmember values smoothed using a Savitzky-Golay filter. Vegetation endmember values
averaged for each month shown with a dashed line. Unsmoothed vegetation endmember values
shown in the background in lighter colours.
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We therefore performed additional tests using two approaches of averaging
vegetation endmembers to make them more general and appropriate for analysing
different images (Figure 32):

- The first method locally smooths the time series of vegetation endmember
reflectance and index values with a Savitzky-Golay filter and uses the
smoothed values for unmixing. We used a Savitzky-Golay filter
implementation from the R package Signal (Signal developers, 2013).

- The second method calculates monthly averages of vegetation endmember
values and then uses these averages to unmix all images acquired in that
month.

Plots of the time series data for selected land cover presence show no considerable
difference between the different smoothing strategies for the vegetation
endmembers (Figure 33). Since smoothing represents an additional processing step
and lengthens the analysis process, we decided to omit it in further work.
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Figure 33:Time series of the presence of the selected land cover class based on different methods
for smoothing the vegetation endmembers.
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4.6.3 Land cover time series smoothing

To better detect long-term changes in gravel bars, we attempted to remove outliers
with smoothing. We used the Savitzky-Golay filter, which is implemented in the R
package Signal (Signal developers, 2013). The contribution of smoothing was
considerable, as significant changes and important trends were much easier to
detect with visual inspection (Figure 34).
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Figure 34: Time series of different land cover classes presence smoothed with a Savitzky-Golay filter.
Unsmoothed values shown in the background in lighter colours.

4.6.4 Conclusionson land cover time series

Based on a time series of cloudless Sentinel-2 images acquired in the years 2019 and
2020, we made several observations regarding the development of land cover time
series from fraction maps:

- The spectral signatures of endmembers selected on one satellite image can
be used to successfully unmix a time series of different satellite images
acquired in various seasons.

- When acquired separately for each satellite image, vegetation endmembers
show the largest variations. However, temporally smoothing or averaging
the spectral signatures of the vegetation endmembers does not lead to
better fraction maps or more stable land cover time series.

- Smoothing the land cover time series using a Savitzky-Golay filter results in
a more stable dataset where meaningful disruptions can be more easily
identified.
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4,7 Conclusions on the proposed method

We tested various settings to determine the optimal characteristics of a spectral
mixture analysis (SMA)-based method for mapping and monitoring gravel bars. The
method was developed and tested on a 15 km section of the Soca River in Slovenia,
between the settlements of Kobarid and Tolmin. The different options were validated
using either a pixel-wise or a study area-wise accuracy assessment, as both were
shown to give similar results when comparing different settings.

Regarding the input satellite images, we found that both Sentinel-2 and Landsat 8
images can be used to accurately map land cover fractions. Landsat 7 images result
in slightly less accurate results, but the difference is within 0.02 MAE and thus still
acceptable. The atmospheric correction improves the mapping accuracy, but the
topographic correction introduces additional uncertainty and does not contribute to
map improvement. Additionally, increasing the spatial and spectral resolution using
a deep neural network, as tested for Sentinel-2 images, does not lead to more
accurate fraction maps. On the other hand, including selected spectral indices in
addition to spectral bands leads to more accurate results.

The endmember selection is one of the most important steps in SMA; we
therefore tested different configurations. The results show that both manual and
automatic endmember selection can produce accurate fraction maps. Nevertheless,
even the automatic method requires manual inspection of the selected endmembers
to ensure that all of the land cover classes of interest are included. To cover the three
land cover types of interest, the optimal number of endmembers is between three
and five. Based on the existing literature, shade is an additional endmember that can
lead to better fraction maps. However, we found that shade is difficult to detect with
the proposed method. Moreover, including shade in other land cover classes of
interest does not significantly reduce map accuracy. Therefore, we did not consider
shade as a separate endmember. Finally, we found that the endmembers selected
based on one satellite image can be successfully transferred to another satellite
image to perform SMA.

The land cover fraction maps produced using SMA look informative and show the
land cover classes of interest well. Compared to a hard classification based on
spectral angle mapper, the fraction maps are more accurate, which is another
incentive for the proposed method. We therefore used the method to produce land
cover fraction maps for different time points and built a time series of land cover data.
Tests with different methods for developing time series showed that the same
endmembers can be used for unmixing all images. Different smoothing and
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averaging approaches applied to the vegetation endmembers, which have the
largest annual fluctuations, do not lead to more stable and accurate time series.
However, visual inspection of land cover presence plots shows that smoothing the
entire time series with a Savitzky-Golay filter produces clearer results where
disturbances can be more easily detected.

These findings were a base for developing the steps of the complete workflow for
mapping and monitoring fluvial gravel bars as defined in Figure 35. The main
contribution of the proposed method to the existing body of work on land cover
monitoring is the combination of sub-pixel mapping and time series analysis. The
SMA enables the detection of features and processes that are smaller than the input
satellite image pixel and cannot be mapped using hard classification. Land cover
time series based on fraction maps therefore more accurately represent the
conditions in the environment and are more sensitive to changes in the observed
features.

We established the validation method, input data characteristics, endmember
selection strategy, satellite image classification method, and land cover time series
development. The next chapterillustrates the application of the method for mapping
different study areas as well as detecting changes in gravel bars.
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Figure 35: Workflow for the proposed method for monitoring fluvial gravel bars.
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The Vjosa river in Albania is known for extensivegravel bars
which are present due to specific geological pro,
alack of dams that would limit sediment flow.




5
MONITORING GRAVEL BARS

This chapter describes the application of the developed land cover fraction mapping
method to map and monitor fluvial gravel bars. First, land cover fraction maps of
water lands for the Soca, Sava, and Vjosa rivers are presented. We tested the accuracy
of the fraction maps. Next, we verifyed the ability of the fraction maps to detect
changes. Finally, we demonstrated the use of fraction maps to develop land cover
time series, compared the data to selected hydrologic parameters, and explored
potential applications of the time series.

5.1 Fraction maps of gravel for different rivers

To validate the SMA-based method for mapping gravel bars, we applied it to larger
river areas of Soca and Sava in Slovenia, and Vjosa in Albania, all of which are known
to transport large amounts of gravel. A section of Soca also served as the study area
for the development of the method. Vjosa is known for extensive gravel bars and
natural process dynamics. The combined length of the river sections under
consideration was over 250 km.

We used Landsat 5 and Landsat 8 images to generate fraction maps in all study
sites to gain a temporal overview of changes in gravel presence. Three images were
chosen for each river for classification over a period of 30-35 years. All of the selected
images were acquired during leaves-on period. Where available, the hydrological
characteristics during image acquisition time were also checked to minimise the
effect of water level differences on changes of gravel presence (Slovenian
Environment Agency, 2021b). The resulting gravel fraction maps and their
assessment are presented in the next chapters.
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5.1.1 Socariver, Slovenia

The satellite images used for gravel fraction mapping on the Soca river were a
Landsat 5 image from 12 July 1990, a Landsat 5 image from 27 June 2002, and a
Landsat 8 image from 26 June 2019. Endmembers used for the SMA of Landsat 5
images were selected on the image from 2002 with reference from aerial
orthophotos acquired on 18 July 2006, and transferred to the 1990 image.
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Figure 36:Sections of gravel presence maps on the Soca river in Slovenia. The red rectangle on the
left shows the extent of the right plate and the violet rectangle shows the extent of Figure 38, . Data
source: Natural Earth, 2020; Slovenian Water Agency, 2021¢; Surveying and Mapping Authority of
the Republic of Slovenia, 2016, 2021b.
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Endmembers used for the SMA of the Landsat 8 image were selected on the
image based on reference from aerial orthophotos acquired on 5 September 2020.
The water lands with a 100 m buffer on each side of the whole Soca river course in
Slovenia were analysed. For a better view of the details, the resulting map of the
whole river course was split into several sections (Figure 36).

Each section shows the presence of gravel on fraction maps for three different
timestamps (Figure 37). Fraction maps of all sections are available in an online
repository (Stancic, 2025b). Many different types of gravel bars can be observed on
the Soca river. Most commonly, gravel bars appear along the banks of the river, but
there are also some gravels bars in the middle of the river. Gravel bars are complex,
formed by a combination of erosion and deposition.
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Figure 37:Gravel presence on the Soca river near the Kamno settlement (Section 14) in three
different timestamps based on Landsat images.
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5.1.2 Savariver, Slovenia

The satellite images used for gravel fraction mapping on the Sava river were a
Landsat 5 image from 11 July 1984, a Landsat 5 image from 18 July 2004, and a
Landsat 8 image from 30 July 2020. Endmembers used for the SMA of Landsat 5
images were selected on the image from 2004 with reference from aerial
orthophotos acquired on 22 July 2006, and transferred to the 1984 image.
Endmembers used for the SMA of the Landsat 8 image were selected on the image
based on reference from aerial orthophotos acquired on 28 July 2020. The water
lands with a 100 m buffer on each side of the upper section of the Sava river course
in Slovenia were analysed. For a better view of the details, the resulting map of the
river course was split into several sections (Figure 38).

Figure 38:Sections of gravel presence maps on the upper Sava river between the spring and the
Medvode settlement. Data source: Natural Earth, 2020; Slovenian Water Agency, 2021c; Surveying
and Mapping Authority of the Republic of Slovenia, 2016, 2021b. The extent of the figure is shown
in Figure 36.
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Each section shows the presence of gravel on fraction maps for three different
timestamps (Figure 39). Fraction maps of all sections are available in an online
repository (Stancic, 2025a). The Sava river has fewer gravel bars than the Soca, but a
diversity of forms can still be seen. Lateral gravel bars forming along the river bar in
a series of erosion and deposition processes are the most common. We can also see
how one type of gravel can be transformed into another over time, for example from
a mid-channel bar to a point bar.
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Figure 39:Gravel presence on the Sava river near the Besnica settlement (Section 28) in three
different timestamps based on Landsat images.
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5.1.3 Vjosariver, Albania

The satellite images used for gravel fraction mapping on the Vjosa river were a
Landsat 5 image from 24 July 1984, a Landsat 5 image from 24 June 2002, and a
Landsat 8 image from 7 June 2019. We analysed an over 60 km long section of the
Vjosa river between the Memaliaj settlement and the confluence with the Shushica
river. As no official map of water lands was at our disposal, an openly available
polygon of the river delineated based on VHR satellite data with a 100 m buffer on
each side was used to narrow down the area of observation (OpenStreetMap
contributors, 2021).
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Figure 40:Sections of gravel presence maps on the Vjosa river between the Memaliaj settlement
and the confluence with the Shushica river. Data source: Natural Earth, 2020; Bing, 2021.
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Endmembers used for the SMA of Landsat 5 images were selected on the image
from 2002, and transferred to the 1984 image. Endmembers used for the SMA of the
Landsat 8 image were selected on the image based on the newest openly available
VHR data (Bing, 2021; Esri, 2021). For a better view of the details, the resulting map of
the river course was split into several sections (Figure 40).
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Figure 41:Gravel presence on the Vjosa river near the lliras settlement (Section 4) in three different
timestamps based on Landsat images.

Each section shows the presence of gravel on fraction maps for three different
timestamps (Figure 41). Fraction maps of all sections are available in an online
repository (Stanci¢, 2025c). Anissue that can be seen on fraction maps is the presence
of single pixels with very low gravel presence in the middle of gravel bars. This is
observed only on Landsat 5 images. The issue is not present on the Soc¢a and Sava
rivers, so it could be related to the endmembers used for analysis of the Vjosa river.
Additionally, we needed to limit the area of observation to the riparian zone. In
absence of other data, we used the openly available river polygon with a buffer as
described above. However, this polygon is based on recent data and does not take
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the historical river extent into account. Furthermore, the polygon includes the
surface water only, and not the water lands as a whole. We mapped only gravel that
is located within this polygon and so parts of gravel bars further from the present-
day river were missed.

The Vjosa river is known for its extensive gravel bars (Fouache et al., 2001; Rossler
et al., 2018; Spada et al., 2018; Schiemer et al., 2020). The fraction maps clearly show
this and also highlight the fast speed of changes in gravel bar location. The gravel
bars on the Vjosa are mostly complex, formed by a succession of deposition and
erosion. One of the reasons for this abundance and complexity of gravel bars is that
Vjosa is one of the last large European rivers without a dam that would trap the
sediment.

5.1.4 Validation of the land cover fraction maps of water lands

The most recent fraction maps were validated with VHR remote sensing data. The
maps were not validated in their whole extent. Instead, parts of the fraction maps
that matched the extent of available VHR data were taken into consideration.
Different sources of VHR data were used. The gravel map of the Soca river was
validated with a WorldView-2 satellite image with a 2 m spatial resolution, acquired
on 3 July 2019 and covering the extent between the settlements Kobarid and Tolmin
in the length of almost 15 km. The gravel map of the Sava river was validated with
aerial orthophotos with a 0.5 m spatial resolution, acquired on 28 July 2020 and
covering the extent between the river spring at Zelenci, and the settlements
Bohinjska Bela and Posavec. The total length of the validated map is over 60 km. The
gravel map of the Vjosa river was validated with a WorldView-2 satellite image with
a 2 m spatial resolution acquired on 16 July 2019. The validated section is located
between the settlements Pocem and Qesarat with the total length of almost 25 km.

We validated the presence of all of the land cover classes of interest — gravel,
vegetation, and water — using the area-based approach as described in Chapter 4.2.3.
Most of the land cover classes of interest were mapped with less than a 10% error
(Figure 42). Vegetation was an exception with mapping errors slightly over 10% for
the Sava and Vjosa river maps. Gravel was mapped with maximum errors around 5%
on all rivers. The results indicate that gravel can be mapped accurately using the
proposed SMA-based method on diverse rivers.
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Figure 42: Absolute difference in the presence of land cover classes between reference data and
satellite image-based land cover fraction maps for different rivers.

5.2 Detection of changes in gravel presence

We investigated the extent to which fraction maps are able to detect gravel bar
changes. Rapid change detection is one of the most important advantages of using
satellite images from remote sensing systems with a revisit time of only a few days.
We focused on the change detection on the gravel land cover class. Gravel bars are
dynamic geomorphological features that change rapidly. The reasons for changes
may be natural, such as increased water levels or fluvial transport ability, or
anthropogenic, such as in-channel gravel mining or dam construction.

To begin with, we evaluated the ability of fraction maps to detect changes using
simple image differencing. The results were validated with VHR reference data. Aerial
orthophotos with a spatial resolution of 0.5 m acquired on 14 October 2017 and 5
September 2020 were used as reference data. Additionally, a classified VHR
WorldView-2 satellite image of the study area, acquired on 3 July 2019, with a spatial
resolution of 2 m was used as a reference. The reference images were classified into
the three land cover classes of interest using a random forest (RF) supervised
classification. The satellite images used for the test were selected as close as possible
to the acquisition of the reference data. We used Sentinel-2 images acquired on 13
October 2017, 3 July 2019, and 5 September 2020.

The extent of gravel bars changes due to floods and other exceptional events but
also due to changes in discharge. To make meaningful analysis of change detection,
it is therefore important to ensure that dates with comparable hydrological
conditions are considered. The hydrological conditions on the observed dates were
similar, with daily discharges ranging from 11.6 to 35.9 m*/s (Table 17). Existing
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research shows that factors such as endmember quality and radiometric, spatial, and
spectral resolutions of satellite images influence gravel bar mapping accuracy more
than observed changes in hydrological conditions (Stanci¢ et al., 2021). The
differences are particularly negligible when considering that the discharge in the
study area in the years 2017 to 2020 had a much wider variability - between 7.1 and
460 m3/s (Slovenian Environment Agency, 2021b).

Table 17: Hydrological conditions at the time of input and reference data acquisition. Data source:
Slovenian Environment Agency, 2021b.

imageID use image system  acquisition date  discharge (m?/s)
1 input Sentinel-2 16.10.2017 11.6
2 reference orthophoto 14.10.2017 12.3
3 input Sentinel-2 03.07.2019 19.8
4 reference WorldView-2 03.07.2019 19.8
5 input Sentinel-2 05.09.2020 35.9
6 reference orthophoto 05.09. 2020 35.9

We first investigated whether the fraction maps were able to detect changes
observed on the reference data (sensitivity), and then verified whether the changes
detected on the fraction maps could be confirmed with the reference data
(precision).

5.2.1 Sensitivity of fraction maps to changes in gravel
presence

The sensitivity of change detection using land cover fraction maps is defined as the
ability of the change maps to indicate the processes observed on the reference data.
To assess this, we first created a reference map of gravel change by differencing the
classified reference images. We vectorised the resulting change map and calculated
the areas of the change polygons. In line with our objective, we selected areas of
change larger than 400 m? which is equal to the size of one pixels of the input satellite
image. All detected areas of change were validated by visual inspection of the
reference data to confirm that change had indeed occurred. In parallel, we produced
maps of gravel change fractions, again using image differencing. We then calculated
the mean pixel values of the change maps within the reference change polygons.

The calculated values show that a decrease or removal of gravel can be detected
well, with negative values observed on the fraction change maps (Table 18). The
extent of gravel removal was stable and evenly distributed from 2017 to 2020.

97



Table 18: Fraction change for reference data-based areas of gravel decrease.

time period fraction change number of total change
map mean value changeareas  extent (ha)
2017-2019 —0.283 15 3.859
2019-2020 —0.165 26 3.335
2017-2020 —0.394 31 6.172

Gravel increase or deposition can also be detected well with fraction maps, but the
change values are smaller and therefore less evident (Table 19). Most of the
deposition areas formed between 2017 and 2019. There was very little deposition
between 2019 and 2020, and some of the existing deposition areas were removed.

Table 19: Fraction change for reference data-based areas of gravel increase.

time period fraction change number of total change
map mean value changeareas extent (ha)
2017-2019 0.106 23 3.676
2019-2020 0.214 6 0.857
2017-2020 0.177 14 2446

S2-based data reference data
gravel decrease gravel increase 1 gravel decrease
| 1 gravelincrease

Figure 43:Reference dataset and fraction map of changes in gravel between the years 2017 and
2020 on a subset of the study area on the Soca River. Data source: Surveying and Mapping
Authority of the Republic of Slovenia, 2016, 2021a, 2021b, 2021e; Slovenian Water Agency, 2021c.
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The good general overlap between the changes on the reference data and the
fraction maps can also be seen visually by comparing the two mapped datasets
(Figure 43). As can be seen, the areas of change are often narrow and do not cover
the entire satellite image pixel. This may be a reason for low values of fraction change
on maps.

5.2.2 Precision of changes detected on land cover fraction
maps

In a second line of investigation, we tested whether the changes detected by fraction
map differencing actually occurred and can be confirmed by VHR reference data. The
preparation of the input data followed the method described above. Namely, we
examined a simple image differencing of the various time steps and compared the
results based on fraction maps with those observed on reference data. We focused
on the period from October 2017 to September 2020.

o gravel decrease O gravel increase

Figure 44:An extract of pixels selected to verify the precision of the land cover fraction change map.
Data source: Surveying and Mapping Authority of the Republic of Slovenia, 2016, 2021a, 2021b,
2021e; Slovenian Water Agency, 2021b).

We selected 62 non-adjacent pixels that were located in the middle of the areas
of gravel change detected on the fraction maps (Figure 44). Gravel change areas were
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defined as those with at least = 10% change per pixel. The identified changes were
then checked against reference data.

Almost 75% of the identified changes were confirmed with reference data (Table
20). The most common change was from gravel to water, which accounted for almost
half of all changes detected. The hydrological conditions on the observed dates were
similar, therefore we can assume that the changes are not only due to different water
levels. The change from water to gravel accounted for only 16% of all changes
detected. One-tenth of the detected changes was due to gravel overgrowth. A
change was falsely reported in 16% of cases. Most commonly, an increase of gravel
was noted in areas where gravel was removed. In 10% of cases, no change could be
detected on the reference data even though maps of fraction change indicated
otherwise. Pixels where no change could be confirmed had the lowest average values
of fraction change, below 20%. For comparison, pixels where gravel deposition
occurred had an average fraction change value of 30%. Where gravel removal took
place, the average fraction change value was —47%. We conclude that values of
fraction change above + 30% are indicative of real change.

Table 20: Fraction change for the analysed areas of change, identified on the land cover fraction
change map for the period 2017-2020.

type of change number of share of average fraction
instances instances (%) change map value
water to gravel 10 16 0.304
gravel to vegetation 6 10 —-0.446
gravel to water 30 48 -0.479
gravel to water (error) 9 15 0.254
gravel to vegetation (error) 1 2 0.127
no change 6 10 -0.175
total 62 100 —0.198

5.2.3 Correlation of observed changes between fraction maps
and reference data

A third and final validation of change detection was the correlation between the
change values observed on the fraction maps and the reference data. The reference
data were first resampled to the spatial resolution of the fraction maps, i.e., 20 m.
Then, the values were extracted for all the pixels in the validation areas and only for
the pixels in the change areas that were detected on the VHR reference data. The
extracted values of the fraction maps and the reference data were then compared
using the Pearson correlation coefficient.
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The results show that the change maps are highly correlated, especially in areas
of change (Pearson’s r > 0.85, p < 0.0001). The lowest correlation is observed for the
2019 to 2020 period with r = 0.469 for the whole area and r = 0.663 for the change
areas (Table 21).

Table 21: Correlation between fraction and reference change maps, p < 0.0001.

time period whole area change areas
rvalue number of r value number of
instances instances
2017-2019 0.542 4,691 0.860 250
2019-2020 0.469 4,691 0.663 199
2017-2020 0.606 4,691 0.860 254

Monitoring changes of fluvial gravel bars must be carried out at time points with
comparable hydrological conditions. This can be challenging since the acquisition of
input satellite images as well as reference remote sensing data is fixed in time. Cloud
obstruction further limits the amount of data that can be used for monitoring. When
validating change detection, the task is particularly complex as the hydrological
conditions need to be matched between the input satellite images and also the
reference data. In our study case, the daily discharges ranged from 11.6 to 35.9 m3/s.
Reference data were acquired very close to the input satellite images, mostly on the
same day. When reference data were from a different date, the difference in daily
discharges between reference and input data was 0.7 m®s. Such fluctuations
evidently do not alter the gravel bar extent too significantly, as the overlap between
changes observed on reference and input data was very high.

53 Assessment of land cover time series based on fraction
maps for monitoring

In the following section, we aim to verify whether the land cover fraction maps
produced with SMA can be used to monitor the presence of land cover classes and
whether these data can provide information about possible changes in water lands.
To this end, we first tested the stability of land cover presence data and their
correlation with changes in hydrologic data. Next, we examined how known gravel
bar changes manifest on plots of gravel presence through time.
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5.3.1 Comparison of land cover time series based on fraction
maps with hydrological data

Rising water levels inundate parts of gravel bars, reducing their extent. We checked
whether this process could be detected in time series of gravel presence based on
remote sensing relative to water levels measured in situ. The analysis was performed
for the study area on the Soca between the settlements of Kobarid and Tolmin.
Hydrologic data were obtained from a gauging station in Kobarid, located at
46.247481° N, 13.586414° E. The data are collected by the Slovenian Environment
Agency and are publicly available (Slovenian Environment Agency, 2021b). The
plotted graphs show a clear negative correlation between the area covered with
gravel and the water level (Figure 45). This was confirmed by the Pearson correlation
coefficient of —0.643 (p < 0.0001) (Figure 46).
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Figure 45: Time series of gravel presence in the study area and water level at the Kobarid gauging
station. Data source: Slovenian Environment Agency, 2021b.

After some extreme weather events, abrupt changes in water level may occur. Such
changes may happen too rapidly to be reflected in the change of gravel bar area and
may not even be captured within the return period of the remote sensing system.
This could reduce the correlation between the water level and gravel area datasets.
To account for these abrupt processes, we tested the influence of different
smoothing methods. For water level, we calculated a five-day moving average for
each date, with the date in question as the last data point in the averaging
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calculations. We also smoothed the data using a Savitzky-Golay filter. The same filter
was applied for smoothing the gravel area. We calculated the correlation between
values measured on the same day, considering a total of 58 different dates from 2019.

R?=0.413
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water level (cm)
Figure 46: Scatter plot with the linear regression line and coefficient of determination between
gravel presence in the study area and water level at the Kobarid gauging station. Data source:
Slovenian Environment Agency, 2021b.

Table 22: Correlation between water level and gravel area in the study area on the So¢a River. Data
from 58 different dates in 2019 were considered, p < 0.0001.

water level
no smoothing  five-day average  Savitzky-Golay
no smoothing —-0.643 —-0.601 —-0.724
gravelarea i\ v-Golay -0.656 -0.617 -0.729

The results indicate a good correlation between the non-smoothed gravel area and
water level datasets (Table 22). Using a Savitzky-Golay filter to smooth either the
gravel area or the water level increases the correlation between the two datasets. The
highest correlation (-0.729) is observed when both datasets are smoothed with a
Savitzky-Golay filter. In contrast, using a five-day average water level instead of daily
values slightly reduces the correlation. This finding supports existing knowledge that
the five-day moving average provides useful information primarily under stable
conditions without precipitation.

From the correlation, we can conclude that the land cover maps are consistent
with the expected physical processes and can be considered as valid data sources.
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5.3.2 Using time series to detect changes in gravel presence

In this subchapter we assess whether known change events can be detected from
the time series data of gravel presence. The change events considered were selected
based on field data and confirmed with reference data. Change events on the Soca
near the settlement of Dolje and on the Sava river near the city of Kranj were selected.

5.3.2.1 Case study at Dolje on the Soca river

Large gravel bars are present on the left bank of the Soca near the settlement of Dolje
(Figure 47). Reference images of the area show that large changes in the form of
gravel bar removal occurred between 31 October 2019 and 5 December 2019. We
focused the analysis of land cover presence on the smaller study area at Dolje, 15 ha
in size, to check whether the changes also manifested in the gravel area.

Figure 47:Overview of the study area for small-scale gravel change detection on the Soca river near
the settlement of Dolje. Data source: Surveying and Mapping Authority of the Republic of Slovenia,
2016,2021a, 2021b, 2021e; Slovenian Water Agency, 2021c.
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Figure 48: Presence of gravel in the Dolje study area in 2019 and 2020.

31.10.2019

10.11.2019 - 5.12.2019

Figure 49: Sentinel-2 true colour images showing the removal of gravel from the Soca river at the
Dolje study area and the subsequent formation of new gravel bars. The extent of gravel bars under
observation is shown on Figure 47. Data source: Modified Copernicus Sentinel data, 2021.
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We plotted a time series of gravel presence in the Dolje study area for the years
2019 and 2020 (Figure 48). The average area covered by gravel in the observed
period is 4 ha. Reviewing the input satellite images, we found that a decrease in
gravel presence up to two standard deviations, i.e., by a total of 2 ha, indicates actual
changes in the size of gravel bars.

The changes can be clearly seen on satellite images (Figure 49). The processes of
re-formation of gravel bars at similar locations to where they were present before is
in line with reports in existing literature (Robert, 2003).

5.3.2.2 Case study at Kranj on the Sava river

Extensive gravel deposits are present on the Sava river near the town of Kranj,
downstream of a soft dam for a hydroelectric power plant (HPP) (Papler and Basej,
2014) (Figure 50). Satellite images of the area show that large gravel bar removal took
place between 2 July 2020 and 27 July 2020. We focused the analysis of land cover
presence on the smaller study area at Kranj, 15 ha in size, to check whether the
changes can be detected in a time series of gravel presence.
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Figure 50: Overview of the study area for small-scale gravel change detection on the Sava river near
the town of Kranj. Data source: Surveying and Mapping Authority of the Republic of Slovenia, 2016,
2021a, 2021b, 2021e; Slovenian Water Agency, 2021c.
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We plotted a time series of gravel presence in the Kranj study area for the years
2019 and 2020 (Figure 51). The average area covered by gravel in the observed
period is 2.7 ha. Reviewing the input satellite images, we found - similar to the results
at the Dolje study area - that a decrease in gravel presence up to two standard
deviations, indicates actual changes in the size of gravel bars.
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Figure 51:Presence of gravel in the Kranj study area in 2019 and 2020.

The changes can also be confirmed visually on satellite images (Figure 52), on the

next page.
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Figure 52: Sentinel-2 true colour images showing the removal of gravel from the Sava river at the
Kranj study area. The extent of gravel bars under observation is shown on Figure 50. Data source:
Modified Copernicus Sentinel data, 2021.
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6
DISCUSSION

The study proposes a method for sub-pixel mapping of fluvial gravel bars based on
spectral mixture analysis (SMA) using freely available Earth observation (EO) data. We
tested several configurations to determine the most appropriate method for fraction
map validation, optimal characteristics of the input satellite image, the most
successful process of endmember selection, the production of fraction maps, and the
final development of a time series of land cover presence. The method was
developed on a section of the upper Soca river in Slovenia. Subsequently, we
transferred the method to map gravel bars in multiple timestamps on the whole Soca
river in Slovenia, the upper Sava river in Slovenia, and the middle Vjosa river in
Albania. We also tested the ability of fraction maps to detect small-scale changes in
the extent of gravel bars. Finally, we evaluated the usefulness of time series based on
fraction maps to derive information on the hydrological characteristics of rivers and
to detect the removal of gravel bars.

The final chapter with discussion summarises the achievement of the proposed
research objectives, outlines the contribution of the study to science, describes the
limitations of the proposed method, and highlights opportunities for further work.

6.1 Reaching research objectives

The first part of the book describes the tests that were conducted to develop the
method for producing accurate land cover fraction maps of fluvial environments. The
focus of the study is on the gravel land cover class, but to gain an overview of the
environment studied, we also mapped surface water and vegetation. These land
cover classes were considered in accuracy assessments. Validation was performed at
two different levels, where we first focused on the land cover fractions mapped on
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selected single pixels (pixel-based validation), and then examined the land cover
presence on the entire study area (area-based validation). We assessed the mapping
results based on different input images — four-band 10 m Sentinel-2 images, ten-
band 20 m Sentinel-2 images, six-band 30 m Landsat images, and various spectral
indices derived from the input spectral bands. The validation areas ranged in size
from a 15 km long section on the Soca to a 25 km section on the Vjosa and a 60 km
section on the Sava.

The best results of the pixel-based validation showed a total mean absolute error
(MAE) of 0.084. That means that the presence of all land cover classes of interest was
mapped on average with the accuracy of + 8.4% per pixel. The highest total MAE for
a different image with a different endmember selection strategy was 0.126. The
relative variation of MAE between the different fraction maps is low in absolute terms
(£ 4.2%). This indicates the stability and robustness of the proposed method.
However, accuracy of the mapping varies between the different land cover classes of
interest. Gravel is mapped the most accurately in all cases, with an average MAE of
0.088 + 0.016 across different fraction maps. Vegetation is mapped with the least
accuracy, with an average MAE of 0.125 + 0.017. Water is mapped more accurately
than vegetation, but has a higher standard deviation in mapping accuracy with an
average MAE of 0.099 + 0.021. The area-based validation shows similar trends to the
pixel-based validation. In most maps, gravel presence is mapped the most accurately,
followed by water and vegetation. The absolute differences in land cover presence
between the fraction maps and the reference data are mostly within 10%. The only
exception is vegetation along the Sava and Vjosa rivers, which is overestimated by
more than 11%.

Based on the results summarised above, we can therefore confirm that using
freely available satellite images with spatial resolutions of 10 m, 20 m, and 30 m, an
overall mapping accuracy of 90% was achieved. However, some caveats regarding
the method need to be considered. Namely, vegetation mapping with SMA is less
accurate and often does not reach accuracies of 90% both on a sub-pixel level and
on the study area-wide scale.

In the second part of the study, we investigate the ability of SMA-based fraction
maps to monitor gravel bars. We first produced fraction maps for river sections up to
over 90 km long in three different timestamps over a 30-year period. Gravel bars were
successfully mapped in all timestamps on different rivers. Subsequently, we were
interested in the possibilities of change detection on fraction maps. To do this, we
began by using simple map differencing. First, we tested the sensitivity of fraction
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maps, also known as recall and true positive rate, i.e., whether changes observed on
very high resolution (VHR) reference data could be detected by fraction maps. We
focused on areas of change with a size of at least 400 m?, which corresponds to one
pixel of the selected input satellite image (the 20 m bands of the Sentinel-2). The
results showed that gravel removal could be successfully detected using fraction
maps with negative values of gravel presence change. Gravel accumulation could
also be detected, but the positive change values were smaller in our case and
therefore less distinct. Second, we evaluated the precision of the fraction maps, i.e.,
whether the changes detected on the fraction maps could be verified with VHR
reference data. We examined pixels of the fraction maps that were found to have a
change of at least £ 10% between 2017 and 2020, and checked whether the change
could also be seen on the reference data. We were able to confirm almost 75% of the
changes reported by the fraction maps. The pixels where a change actually occurred
showed a gravel presence change of at least + 30%. From this we can infer that a
change in gravel presence in a pixel of at least + 30% indicates definite gravel
removal or deposition.

The second part of the change detection assessment tested the potential of using
time series data. We plotted the total presence of gravel in a selected smaller study
area where gravel removal was known to have occurred. The selected study areas
were located near the Dolje village on the Soca and near the Kranj city on the Sava.
The average extent of gravel bars was 4 ha at Dolje and 3 ha at Kranj. The extents of
gravel bars varied with changes in water level. However, we found that a decrease in
gravel bar size within two standard deviations of the mean indicated regular
variations, while a larger decrease pointed to gravel bar removal. In agreement with
the outlined results, we can thus also confirm that time series analysis of sub-pixel
land cover maps allows the detection of seasonal changes in gravel bar extent and
location. In addition to seasonal dynamics, changes in the extent of gravel bars due
to exceptional anthropogenic and natural events larger than 500 m? can also be
detected. The extent of changes that can be detected is also influenced by the spatial
resolution of the input satellite images. Nevertheless, we showed that freely available
satellite images can be successfully used to detect changes in gravel bars down to
400 m? (one pixel) in size.
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6.2 Contribution to monitoring of water-related ecosystems

The application of EO data to collect environmental variables and monitor the state
of the natural environment is an important field that has also been highlighted in the
United Nations 2030 Agenda which formulated the Sustainable Development Goals
(SDGs) (UN, 2015). The main motivation that guided the topic of this study was to
contribute to the work on SDG indicator 6.6.1: Change in the extent of water-related
ecosystems over time (UN, 2017). Fluvial gravel bars are important water-related
features that are often difficult to map and monitor due to their small extent.
Therefore, by applying the SMA to map fluvial gravel bars, we contributed to the
development of new knowledge and experience in using EO data to monitor
progress towards the SDGs.

The main scientific contribution of this study is the development of a new
procedure for rapid and accurate mapping of gravel bars and other water-related
ecosystems. The workflow uses freely available satellite images with short revisit
periods, making it well suited for monitoring. In addition, the produced land cover
maps of water-related ecosystems can inform planning and management decisions.
Comprehensive large-area maps are particularly valuable for managing fluvial
ecosystems, where changes in one part of a basin may affect areas far downstream.

The production of land cover maps for a long period provided a good overview
of the dynamics of gravel bars in the past. Additionally, with frequently available
input satellite images we were able to rapidly detect and monitor changes over a
short time period. This supplementary information on past characteristics and timely
information on changes combine to contribute to a better understanding of the
dynamics of fluvial gravel bars. Our results show that gravel bars are very dynamic
with rapidly changing extents. Water level has a major influence on the extent of
gravel bars. Despite changes in size and shape, the locations where gravel bars occur
in a river channel are constant. Even after gravel bars are removed, new deposits
quickly form at the same location.

The proposed method was developed on river sections for which several different
VHR remote sensing as well as in situ data were available. This allowed validation of
the results and determination of the optimal workflow. We analysed the
transferability of the workflow to other areas and found that it is possible and
provides accurate results. The method can be used to study other rivers for which
there may not be as much data available. Studying different rivers may lead to a new
understanding of the effects of natural and anthropogenic changes on the land cover
of water-related ecosystems.

13



6.3 Limitations of the proposed method

The main limitations of the proposed method are related to cloud cover and terrain
shadows, which are well-known problems of optical images. Mountainous areas,
which were the focus of many of our observations, are frequently covered by clouds
due to rising air masses. Additionally, river valleys are located between steep slopes,
resulting in shadowing. This issue is particularly pressing during the winter months
when the Sun incidence angle is low. We mitigated cloud obstruction problems by
using a cloud masking algorithm (Sinergise, 2021). We attempted to address
topographic normalisation with radiometric corrections, but the results were not
satisfactory. Future work could test different radiometric correction algorithms, such
as the Teillet regression or the Statistical Empirical model (Teillet et al., 1982), the b
correction (Vincini et al.,, 2002), the Modified Sun-Canopy-Sensor correction (SCS+C)
(Soenen et al.,, 2005), the Variable Empirical Coefficient Algorithm (VECA) (Gao and
Zhang, 2007), or the Path Length Correction (PLC) (Yin et al., 2018), which have been
shown to be successful in other studies (Ma et al., 2021).

The difficulty in distinguishing land cover classes is partly due to their physical
characteristics. Rivers are often shallow, so the sensor detects gravel reflectance from
the riverbed in addition to surface water, which can lead to misclassification.
Problems with vegetation detection occur primarily when foliage is not fully
developed and the sensor detects bare ground or shade under trees.

In addition to the limitations that apply generally to land cover classification
based on multispectral optical images, issues related to SMA in particular are also
important. The SMA determines the fraction of land cover presence on an individual
pixel by examining the spectral signal from the observed pixel and comparing it to
the spectral signals of the input endmembers. The land cover fractions are
determined based on the degree of similarity between the spectral signals of the
observed pixel and the endmembers. The selected endmembers must therefore
have sufficiently different spectral properties for the SMA to be able to differentiate
between their respective contributions to the spectral signal of the observed pixel. It
is therefore necessary to make simplifications and generalisations when selecting the
land cover classes that are considered in the analysis.

In our study of mapping gravel bars, the most severe simplification was the
inclusion of built-up areas in the gravel class. The gravel presence maps therefore do
not differentiate between gravel bars and built-up areas. We mitigated this problem
by limiting the study area to water lands in order to include only riparian areas in the
analysis. However, some built-up is present even in water lands, particularly in larger
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settlements. This could be addressed with the addition of different EO data such as
synthetic aperture radar (SAR), or in the post-processing stage with the use of
auxiliary datasets of buildings and infrastructure for masking.

The usability of the SMA-based approach depends on river width relative to the
spatial resolution of the EO data. While it enables the detection of gravel bars smaller
than the pixel size, its performance decreases in very narrow river sections due to
increased spectral mixing with surrounding land cover. Therefore, the method is
most effective in river reaches where the channel width is sufficient to ensure that
gravel bars contribute a significant spectral signal within individual pixels.

The accuracy of the SMA depends on the ability of the selected endmembers to
represent the land cover classes of interest. Validation of our fraction maps indicates
that gravel can generally be modelled well with the selected endmembers. On the
other hand, vegetation and water are more problematic for mapping. Vegetation in
the study areas occurs in diverse forms, mostly as mixed forest, but also as shrubs and
grasslands. The general shapes of the spectral signatures are similar across different
vegetation forms, but each plant species still has slightly different spectral
characteristics. These differences can lead to errors when a single endmember is used
to model all of the different vegetation classes. Similarly, water can have different
spectral responses depending on Sun glint, surface waves, depth, sediment content,
microorganisms, and dissolved organic matter (Guneroglu et al., 2013; Japitana et al.,
2019; Vouvé et al., 2009). Thus, different models could be used to represent water
based on different endmembers. The model with the smallest RMSE could then be
selected as the final model for mapping water (Cavanaugh et al., 2011). A similar
strategy could be used for vegetation.

Real changes of gravel bars can only be detected with observations during times
of similar hydrological conditions. Otherwise, the detected changes could be the
result of different water levels and not changes in bedload. This may limit the studies
of rivers with fewer gauging stations. Radar altimetry has been shown to provide
good ancillary data in the case of ungauged rivers and could be used to inform
further analysis and allow an unbiased change detection (Bogning et al., 2018).

6.4 Opportunities for further work

The proposed method can be used to study and monitor other rivers where
important gravel bar habitats are present. A well-known European example is the
Tagliamento river in Italy, which forms extensive gravel bars with high biodiversity.
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Theriveris also very dynamic and therefore interesting to observe frequently (Gurnell
et al., 2001; Henshaw et al., 2013). Rivers in different climatic zones and with various
geologic characteristics of the basins can be studied to learn more about the
geomorphological processes that shape them.

This study explored several characteristics that are important for improving the
accuracy of SMA-based land cover fraction maps. These findings and the proposed
workflow can be used for mapping various phenomena. The only limitation in using
this method is that the observed land cover classes must have very distinct and
different spectral properties. This is necessary for the SMA to accurately determine
the contributions of the different land cover classes to the mixed signal in a single
pixel (de Vries et al., 2021). For example, it is difficult to correctly map different tree
species that have a very similar spectral signature shape with SMA. However,
delineation of bare ground or built-up areas and vegetation or water can be
successfully performed. Therefore, examples of other possible applications of the
proposed method are monitoring of urban sprawl, rock-fall, deforestation, and open-
pit mining.

Monitoring gravel bars with the proposed method could be complemented with
additional data in the future. In particular, the use of SAR could lead to better results.
The SAR data could be integrated in a pre-processing stage, to more accurately
delineate the area of observation or in the post-processing stage to mask out areas
that are not of interest. Differences in texture are picked up well by SAR, which could
help in differentiating between gravel bars and built-up areas. Data from SAR have
been shown to be successful in separating water from other land cover classes (Musa
et al,, 2015). Additionally, SAR is not affected by clouds, which is an important
consideration when studying mountainous regions where cloudy conditions are
frequent. The successful use of combined SAR and multispectral data for land cover
classification has already been demonstrated (Sukawattanavijit et al., 2017).
Importantly, with the Copernicus programme supporting the operation of the
Sentinel-1 SAR system, the long-term operational data availability is assured.

Hydrological conditions influence the reliability of monitoring changes of gravel
bars. If changes are assessed between two time points with very different conditions,
the differences in water level could induce changes that are not due to flood events
orinfrastructural interventions. In the present study of change detection, we selected
images from the same season and thus ensured comparable hydrological conditions.
However, this aspect of change detection can be developed further with more
emphasis placed on selecting dates with very similar conditions.
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7
CONCLUSION

The study proposes a novel method for monitoring gravel bars in rivers using Earth
observation (EO) data. Gravel bars are dynamic geomorphological features that
provide many important ecological functions. Natural and anthropogenic changes in
the fluvial environment rapidly lead to changes in the gravel bar extent and location.
Gravel bars can therefore be considered indicators of alterations and disturbances in
the fluvial environment. Monitoring gravel bars using field mapping is time
consuming and therefore unfeasible for covering a large area simultaneously to
provide an overview of the impact on the wider river system. Satellite remote
sensing, with its frequent observations, increasingly open availability, and uniform,
wide-area coverage, provides an ideal data source for monitoring natural processes.
However, freely and openly available satellite images have a spatial resolution of
10 m at best, which may be too coarse to accurately detect gravel bars. We therefore
tested soft classification as a method to observe features smaller than the spatial
resolution of the EO sensor. Sub-pixel mapping was performed using spectral
mixture analysis (SMA). We set several research objectives to develop a SMA-based
mapping method for fluvial gravel bars that is transferable to different locations and
requires only openly available data. The study area used for method development
and related testing was located on the Soca river in northwestern Slovenia between
the settlements of Kobarid and Tolmin.

Gravel bars can form in different parts of the river channel by both deposition and
erosion processes. Once formed, their general location remains relatively stable, but
their extent varies depending on the water level. Even where gravel bars are
completely removed during resource excavation operations, they usually re-form
quickly in the same location and with a similar extent. These characteristics of gravel
bar development were also confirmed by our observations. We were able to obtain
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this information from time series of fraction maps showing the presence of gravel
bars. The development of these maps was the result of many different tests that
allowed us to gain a better understanding of the SMA and the features that define its
accuracy.

We used very high resolution (VHR) aerial orthophotos and satellite images and
classified them into the land cover types of interest using a Random Forest classifier
with 500 trees. These classifications were used as reference data for validating the
land cover fraction maps. We used two different validation methods, one focusing
on pixel-level accuracy and a second evaluating the accuracy of land cover detection
across the entire study area. The input data for the sub-pixel mapping were openly
available satellite images from the Sentinel-2 and Landsat programmes. When
working with Sentinel-2, we used the 20 m spectral bands because the majority of
bands are acquired at this spatial resolution. The bands originally acquired at 10 m
were resampled to 20 m. Detailed and abundant spectral information is critical for a
successful SMA. Therefore, we supplemented the information from the spectral
bands with selected spectral indices to better discriminate between gravel,
vegetation, and water.

As described in the literature, appropriate endmembers are key to accurate
fraction maps. We tested several configurations to determine the optimal
characteristics for endmember selection for mapping gravel bars. Automatic
endmember extraction was found to result in products with similar accuracy as using
manually selected endmembers. However, even with automatic endmember
extraction, operator intervention is required to ensure that the selected endmembers
actually represent the land cover of interest and are not outliers. The approach that
produces the most accurate fraction maps must therefore be semi-automatic. We
found that three to five endmembers per SMA are optimal and that, contrary to
results from the literature, adding shade as a separate endmember does not
contribute to the accuracy of the fraction maps. In addition, endmembers selected
on one satellite image can be used for the SMA of another satellite image from a
similar geographic zone and phenological phase.

We compared the produced fraction maps of gravel bars with results from a hard
classification using the Spectral Angle Mapper applied to the same input data to
assess the contribution of soft classification to mapping accuracy. The results show
that soft classification more accurately represents land cover in the studied
mountainous riparian environment. After confirming the suitability of fraction maps,
we further developed and applied the method. Time series of land cover presence
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were derived from fraction maps and smoothed using a Savitzky-Golay filter to
reduce outliers while preserving distinct changes. The method was extended to the
upper and middle sections of the Soca River, the upper section of the Sava River in
Slovenia, and the middle section of the Vjosa River in Albania, covering over 250 km
of river length. Landsat images were used to produce fraction maps of gravel bars
over the past 35 years.

Finally, we evaluated the ability of the fraction maps produced to detect changes
in gravel bars. First, we tested simple image differencing of two fraction maps. To
ensure that the observed changes resulted from flood events, gravel mining, or other
interventions, and not just changes in water level, we selected dates with similar
hydrologic conditions. We were able to show that change detection using this
method had high sensitivity, detecting areas of change with an extent of at least
400 m? or one pixel of input satellite images. The change maps also showed
satisfactory precision, with nearly 75% of detected changes confirmed by VHR
reference data. Next, we investigated whether time series of gravel presence could
also be used to detect change. The extents of water and gravel can vary following
changes in water level. However, we found that a decrease in gravel bar size within
two standard deviations of the mean indicated regular variations, while a larger
decrease pointed to gravel bar removal.

Additionally, we compared the EO-based time series of land cover presence with
in situ hydrological data. We found a high statistically significant negative correlation
between the gravel presence and the water level measured at a gauging station in
the study area. This suggests that remote sensing results can be used to provide
information about processes in areas where accurate and long-term in situ
measurements are not established.

Thus, we achieved the research objectives set at the beginning of the study and
obtained the expected results. These results can serve as a starting point for mapping
different land cover types, such as built-up areas, bare ground, or anything else with
distinct spectral properties and a tendency to occur at extents too small to be
detected with openly available satellite images. In the case of extending the method
to other land cover types, the tests defined by the workflow for deriving the method
proposed in this study would need to be repeated to determine the optimal mapping
method for the particular land cover type under observation. The questions relating
to endmembers are particularly important to accurately detect the land cover type
of interest. Nevertheless, we believe that our study provides a good framework for
further research and extension of the method to other land cover types.
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A well known axiom in nature conservation is that processes which cannot be
observed cannot be understood and features which cannot be monitored cannot be
protected. Increasing volumes of EO data offer an opportunity to address such
concerns about data gaps. We hope that the workflow that was developed in the
scope of our research in addition to our findings will contribute to leverage the
available data. The sub-pixel mapping method ensures that smaller features, which
may have an important influence on environmental functions, are also considered in
monitoring programmes. New insights into gravel bar dynamics may inform future
efforts in protecting natural river ecosystems and restoring altered ecosystems closer
to their natural state. This will enable a full functioning of river ecosystems with all
the social and ecological benefits that they bring. Additionally, the developed
method is opening several intersting possibilites for further technical solutions and
thematic applications. There is therfore ample space to use available data in
improved workflows to increase our understanding about the world and
consequently lead a more responsible existence.
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10
GLOSSARY

Endmember, pure pixel: Pixel
representing the spectral properties of a
single land cover class. Endmembers may
be measured with a spectro-radiometer,
found on an actual satellite image, or
estimated based on image data.

Endmember selection, endmember
extraction: Determination of pixels
representing land cover classes of
interest on a satellite image. The
selection can be done manually with the
help of reference data with a higher
spatial resolution, or automatically, for
example with a region growing
algorithm to find the extremities of the
image feature space.

Fully constrained spectral mixture
analysis: Method for calculating land
cover presence where the fraction values
within each pixel need to sum up to one
and must be non-negative.
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Hard classification: Method for
recognising features on a satellite image
where the whole area of each pixel is
assigned to a single class.

Image endmember: Pixel on a satellite
image chosen to represent the spectral
properties of a particular land cover class.
Reference data with a higher spatial
resolution is usually necessary to ensure
pixel purity.

Land cover fraction, land cover
abundance: Share of a pixel covered by
a particular land cover class. The share is
determined based on the degree of
similarity of the pixel’s spectral signature
to the spectral signature of the particular
land cover class.



Non-linear spectral unmixing: Method
for calculating the presence of selected
land cover classes in a setting where the
classes are very closely mixed. Each
incoming photon therefore interacts
with more than one class. Non-linear
spectral unmixing is necessary, for
example, when analysing the materials
present in sand or soil.

Non-pixel endmember:  Spectral
properties of a selected land cover class
that are not derived from a single pixel on
a satellite image, but estimated based on
the image data. Non-pixel endmember
need to be used when images are highly
mixed and no pure pixels are present.

Soft classification: Method for
recognising features on a satellite image
where the cover of each pixel is defined
as a mix of different land cover classes.
The mix is represented by land cover
fractions.

Spectral angle mapper: Method for
assigning selected land cover classes to
pixels based on a comparison of angles
between vectors of reference spectraand
pixels spectra. The smallest calculated
angle means the biggest similarity
between the two spectra under
consideration.

Spectral mixture analysis: Method for
determining the presence of selected
land cover classes in a pixel based on the
pixel's spectral properties.

Transferred endmember: Pixel chosen
to represent the spectral properties of a
land cover class selected on one satellite
image and used to determine land cover
fractions on another satellite image.
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