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Abstract 

Gravel bars are dynamic areas of bedload deposition in rivers. They perform 
important ecological functions and are considered indicators of changes in the 
hydrological characteristics of rivers. Satellite images with a frequent revisit period 
and a large area of simultaneous coverage are an ideal data source for monitoring 
many natural features including gravel bars. Openly and freely available remote 
sensing data from the Sentinel-2 and Landsat systems have a spatial resolution that 
may be too coarse for accurate detection of gravel bars, especially in mountainous 
areas where rivers and related features are narrow. We therefore developed a sub-
pixel mapping method based on spectral mixture analysis. Very high resolution aerial 
orthophotos and satellite images, as well as field mapping, were used as reference. 
Sentinel-2 and Landsat spectral bands were supplemented with spectral indices to 
increase the separability between land cover classes of interest. Automatically 
selected endmembers led to results with similar accuracy as when manually selected 
endmembers were used. Endmembers selected on one image of the study area 
during the leaf-on season could be used to analyse another image of the same study 
area acquired with the same remote sensing system at a different time. The fraction 
maps were found to be more accurate than maps produced by hard classification 
with Spectral Angle Mapper using the same input data. Considering these findings, 
we produced fraction maps of gravel, vegetation, and water presence for the Soča 
and Sava rivers in Slovenia, and the Vjosa river in Albania for a period of over 30 years. 
The thematic accuracy of the maps was within 90%. We also tested the ability of 
fraction maps for change detection and found that changes of at least 400 m2 could 
be accurately detected. The time series plots can also be used to detect gravel 
removal as demonstrated at known excavation sites near the Dolje settlement on 
Soča and near Kranj on Sava. The current study contributes to science with new 
insights about the application of sub-pixel mapping for monitoring natural 
processes. The developed method can be applied to study areas where less in situ 
data are available. More informed management decisions can be made based on 
newly acquired knowledge. 

Key words: bedload, gravel bars, monitoring, mountainous areas, multispectral data, 
optical images, remote sensing, rivers, soft classification, spectral mixture analysis, 
sub-pixel mapping 



 

PODPIKSELSKO KARTIRANJE ZA ZAZNAVANJE SPREMEMB V REČNIH OKOLJIH 
Liza Stančič, Krištof Oštir, Žiga Kokalj 

 

Izvleček 

Prodišča so dinamična območja odlaganja plavin v rekah. Opravljajo pomembne 
ekološke funkcije in veljajo za pokazatelje sprememb hidroloških značilnosti rek. 
Satelitski posnetki s kratkim časom ponovnega obiska in velikim območjem hkratne 
pokritosti so idealen vir podatkov za spremljanje številnih naravnih značilnosti, 
vključno s prodišči. Prosto dostopni podatki daljinskega zaznavanja sistemov 
Sentinel-2 in Landsat imajo prostorsko ločljivost, ki je lahko preveč groba za natančno 
odkrivanje prodišč, zlasti na gorskih območjih, kjer so reke in z njimi povezane 
značilnosti ozke. Zato smo razvili podpikselsko metodo kartiranja, ki temelji na analizi 
vsebnosti spektralnega signala. Za referenco smo uporabili letalske ortofote, 
satelitske posnetke zelo visoke ločljivosti in terensko kartiranje. Poleg spektralnih 
pasov Sentinel-2 in Landsat smo za boljše ločevanje med izbranimi razredi 
pokrovnosti uporabili spektralne indekse. Samodejno izbrani končni piksli so 
omogočili kartiranje s podobno natančnostjo kot ročno izbrani končni piksli. Končne 
piksle, izbrane na enem posnetku študijskega območja med sezono olistanja, lahko 
uspešno uporabimo za analizo vsebnosti spektralnega signala drugih posnetkov 
istega območja, pridobljene z istim sistemom daljinskega zaznavanja na drugi točki 
sezone olistanosti. Karte deležev pokrovnosti so natančnejše od kart, izdelanih s trdo 
klasifikacijo s Spectral Angle Mapper z uporabo istih vhodnih podatkov. Ob 
upoštevanju teh ugotovitev smo izdelali karte deležev proda, vegetacije in vode za 
Sočo, Savo in Vjoso (Albanija) za obdobje več kot 30 let. Tematska natančnost kart je 
znotraj 90%. Preizkusili smo tudi sposobnost kart deležev pokrovnosti za zaznavanje 
sprememb in ugotovili, da je mogoče natančno zaznati spremembe v obsegu vsaj 
400 m2. Časovne vrste lahko uporabimo tudi za zaznavanje odstranjevanja proda, kot 
je vidno na znanih območjih odvzema proda pri naselju Dolje na Soči in pri Kranju na 
Savi. Raziskava prispeva k znanosti z novimi spoznanji o uporabi podpikselskega 
kartiranja za spremljanje naravnih procesov. Razvito metodo lahko uporabimo za 
proučevanje območij, kjer je na voljo manj terenskih podatkov. Na podlagi novo 
pridobljenega znanja je mogoče sprejemati boljše odločitve o upravljanju z vodami 
in varstvu habitatov. 

Ključne besede: analiza vsebnosti spektralnega signala, daljinsko zaznavanje, 
mehka klasifikacija, optični posnetki, plavine, podpikselsko kartiranje, prodišča, reke, 
spremljanje, večspektralni podatki  
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Gravel bars on the Vjosa river in Albania. The Vjosa river is 
one of the last free-flowing rivers in Europe, unbounded by 
dams, and is known for extensive gravel bars. 

Foto: Liza Stančič 
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1  
INTRODUCTION 

Successful nature conservation, sustainable development, and integrated resource 
management rely on accurate monitoring which in turn depends on reliable data. 
This is underlined by the UN Statistical Commission, which defined a comprehensive 
set of 231 indicators to track progress towards the Sustainable Development Goals 
(SDGs) (UN, 2017). Data used to obtain information on the indicators must be 
collected in a comparable manner worldwide, must be responsive to change, and 
must provide repeatable observations. It is also beneficial if data collection is not very 
expensive and lengthy. Remote sensing can play an important role in seeking global 
universality of goals, greater objectivity of monitoring methods, and reproducibility 
of the approach (Scott and Rajabifard, 2017). In Earth observation (EO), data are 
collected with sensors that are not in contact with the surface; the data are then 
transmitted to ground stations and processed accordingly. Subsequently, the 
processed images are interpreted and analysed, and the acquired information is used 
for selected applications (Oštir, 2006). A key factor in using satellite images to obtain 
information about the Earth's surface is resolution (Campbell and Wynne, 2011). 

Features such as good spatial, radiometric, and spectral resolution, the possibility 
of multi-level assessment (local, regional, global), increasing frequency of imaging, 
and free access have led to satellite images becoming an important source of various 
environmental data (de Sherbinin et al., 2014). International associations and 
organisations, such as the UN and the Group on Earth Observations (GEO) 
recommend EO data as a primary source of information or as a support for other 
statistical data in monitoring the progress in sustainable development (GEO, 2017). 
However, there is much room for new developments. In hydrology, for example, 
obtaining data from alternative sources (e.g., remote sensing) is considered one of 



14 

the main challenges (Blöschl et al., 2019). In this study, we investigated the possibility 
of using satellite images to obtain the data needed to monitor gravel bars in rivers. 
This is related to the SDG indicator of change in the extent of water-related 
ecosystems over time (UN, 2017). 

The introductory chapter defines the research problem that motivated the 
current study, describes the objectives that guided the workflow, and concludes with 
an overview of the book structure. 

The main research problem addressed by our study is the mapping of river 
ecosystems. Several remote sensing products show the presence of surface water 
worldwide (Huang et al., 2018). Different applications are available to view the extent 
of water over time (Donchyts et al., 2016; Pekel et al., 2016). Other lines of research 
have focused on detecting and monitoring specific water-related features, for 
example, creating global inventories of rivers (Allen and Pavelsky, 2018), lakes 
(Verpoorter et al., 2014), and wetlands (Prigent et al., 2001). These products are based 
on freely and openly available remote sensing data with a spatial resolution of 10 m 
or less. This resolution is more than sufficient to obtain a global overview. However, 
when focusing on changes that are smaller in size, a spatial resolution of 10 m means 
that some important features may not be detected. This is especially true for areas 
with a high spatial heterogeneity of different land cover classes. Slovenia is generally 
characterised by such spatial fragmentation (Foški, 2017; Hladnik, 2005). When 
analysing rivers specifically, areas close to the river’s source are problematic because 
rivers are narrow and therefore difficult to detect on images with a coarser spatial 
resolution. To address the spatial resolution problem, we focused on sub-pixel 
mapping. Instead of assigning the entire pixel to a single class, the fraction maps 
created by sub-pixel mapping indicate the share of each pixel occupied by a 
particular land cover class. In this way, even features smaller than the spatial 
resolution of a given sensor can be detected and mapped. 

There are already applications of sub-pixel mapping in hydrology. Many of them 
focus on delineating smaller features such as wetlands (Kamal and Phinn, 2011; 
Reschke and Hüttich, 2014) or sharp transitions such as coastline mapping (Bishop-
Taylor et al., 2019; Liu et al., 2016). However, we apply this approach to map gravel 
bars in rivers. We focused on gravel bars that form above the water surface and are 
not overgrown with vegetation. Gravel bars are important features in the fluvial 
environment that provide many crucial ecosystem functions. They are dynamic 
features that change rapidly following changes in hydrological characteristics. 
Changes in water level lead to changes in gravel bar extent. When monitoring gravel 
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bar changes it is therefore crucial to examine dates with similar hydrological 
conditions. Gravel bars in Slovenia are mapped through fieldwork or digitisation of 
aerial photographs (Ranfl, 2010). Field mapping is time-consuming and therefore 
allows harmonised observation only in a small area. Mapping based on aerial 
photographs provides high spatial resolution, but is limited by the execution of aerial 
surveys. In Slovenia, each location is systematically imaged by an aerial survey once 
every three to four years (Surveying and Mapping Authority of the Republic of 
Slovenia, 2015). Intermittent surveys are rare due to high financial costs. On the other 
hand, satellite images provide a simultaneous overview of a large area, a new image 
is available every few days, and the data can be freely available. Remote sensing data 
with frequently repeated observations are therefore well suited for monitoring 
gravel bars. However, gravel bars often occur as narrow forms and may be missed in 
whole or in part when mapped using satellite images with a coarser spatial 
resolution. Sub-pixel mapping can therefore make an important contribution to 
more accurate monitoring of gravel bars. Existing methods for gravel bar detection 
using EO are based on manual delineation of aerial orthophotos (Geodetic Institute 
of Slovenia, 2021) or satellite images (Serlet et al., 2018). However, our aim was to 
develop a method that is automated as much as possible. 

Spectral mixture analysis (SMA) can be used to determine the degree of presence 
of different selected land cover classes within each pixel. This is done by comparing 
the spectral response of each pixel to the spectral responses of the endmembers 
representing pure pixels that contain only a single land cover class of interest. The 
spectral responses of the pixels can be augmented with spectral indices that increase 
the separability of the different land cover classes. The results of SMA are land cover 
fractions that provide sub-pixel mapping information. 

We developed the method for monitoring gravel bars in a study area on the Soča 
river in Slovenia, for which many ancillary remote sensing and in situ data are 
available. These data were used as a reference for validating our results. The 
availability of reference data allowed us to observe and compare the influence of 
different variables on the final result. In this way, we were able to derive the main 
characteristics of the proposed method that can be transferred for the analysis of 
other areas. We also demonstrated the possibility and accuracy of such transfer with 
case studies on the Sava river in Slovenia and the Vjosa river in Albania. There are 
several similarities between the Soča, which was used for developing the method, 
and Sava and Vjosa, which were used to further extend and test the method. All of 
the examined rivers spring in young mountains of alpine orogeny. Due to steep 
slopes they have large potential energy. There is also a lot of material available for 
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the rivers to erode. Therefore, all of the rivers carry extensive amounts of gravel with 
Vjosa being particularly well-known for its gravel deposits. Soča and Sava have similar 
average annual discharges of 80 m3/s while that of Vjosa is slightly higher at 150 m3/s. 
All the rivers have nivo-pluvial flow regimes with peaks in spring and autumn and 
lows in summer and winter. 

Most existing applications of sub-pixel mapping focus on the analysis of a smaller 
number of timestamps with up to ten different satellite images. Gravel bars are 
features that are constantly changing, and therefore we monitored them using a time 
series approach. Additionally, satellite images are now available openly and freely, 
with a return period of less than a week and a commitment to maintain operational 
data provision (Berger et al., 2012; Masek et al., 2020; Woodcock et al., 2008). In 
relation to the time series approach, our analysis included several tests regarding the 
temporal component of monitoring, such as the transferability of endmembers, 
modelling vegetation at different phenological stages, and optimal smoothing of 
time series data to eliminate outliers but maintain meaningful discontinuities. 

Several constraints must be considered when monitoring natural phenomena 
using EO. A key limitation for optical data is the obstruction of the Earth’s surface by 
clouds and their shadows. This is particularly pressing when trying to determine 
changes immediately after heavy rain, as it is always necessary to wait for clear skies. 
A second limitation arises from the study’s focus on narrow river valleys framed by 
steep, high slopes. These can be particularly problematic when the Sun incidence 
angles are low and topographic shadow obscures much of the area under 
observation. Another important point to consider relates to spectral signal analysis. 
The spectral properties of different land cover classes change seasonally, for example 
in the case of deciduous vegetation, and may also be the result of various physical 
factors, such as water, whose reflectance is affected by depth, turbidity, Sun glint, and 
other factors. Our study addresses many of these considerations using a variety of 
methods. Nevertheless, some of these issues remain as challenges for further 
research. 

The aim of the study was to develop a method for monitoring gravel bars in rivers 
using EO data. Freely and openly available datasets were employed, while selected 
very high resolution (VHR) data were used for validation purposes. We use sub-pixel 
mapping to obtain the highest level of mapping detail from the input satellite image. 
Three land cover classes are considered in the analysis: gravel, vegetation, and water. 
These have sufficiently different spectral properties to make the use of a SMA 
possible and meaningful. We teste different configurations to produce the most 
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accurate fraction maps possible. These maps are then used to monitor gravel bars 
and detect changes. 

We test the assumption that SMA can be used to map gravel bars, surface water 
and vegetation with a thematic accuracy of 90%. Freely available satellite images 
with a spatial resolution of up to 10 m are used as inputs. Different configurations are 
tested to determine those that lead to the highest accuracy of the resulting fraction 
maps. We examine the influence of the input images applied for the SMA, including 
the type of remote sensing system used for acquisition, geometric and radiometric 
accuracy, spatial resolution, and use of spectral indices. The tests also focus on the 
characteristics of the endmembers used for SMA – the possibility to automatically 
select accurate and appropriate endmembers, the optimal number of endmembers 
considered, the addition of shade as an endmember, and the transferability of 
endmembers between different images. 

The accuracy of the resulting fraction maps is verified both at the pixel level and 
at the level of the entire study area to account for geometric shifts of the input 
images. Visual interpretation of aerial orthophotos and field mapping are used as 
reference data for pixel-level validation. In the study area-level validation, we 
compare the results based on manual delineation and different land cover 
classifications based on machine learning. Aerial orthophotos and VHR satellite 
images are used as input data to produce reference classifications. Finally, we 
compare the fraction maps resulting from the soft classification with maps obtained 
by a hard classification based on the spectral angle mapping approach to investigate 
the contribution of sub-pixel mapping for monitoring gravel bars. 

After successfully developing a sub-pixel mapping method, we test its application 
on a time series of satellite images to monitor changes. The variability of the extent 
and location of gravel bars can be a result of anthropogenic interventions such as in-
channel mining and building infrastructure in the riparian area. Changes can also be 
due to natural hydromorphological processes in the river channel. Additionally, there 
are seasonal variations in the extent of gravel bars due to seasonal changes in 
discharge. An increased discharge can lead to gravel bar flooding and thus also a 
change in the location of above-water areas of bedload deposits. These seasonal 
changes are not the prime focus of our study as they do not represent real 
displacement of gravel bars. Specifically, we are interested in changes in the extent 
of gravel bars due to exceptional anthropogenic and natural events larger than 
500 m2. Nevertheless, we monitored the seasonality of the variability of gravel bar 
presence to enable the detection of real changes caused by exceptional events. 
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We analyse the annual seasonality of gravel bar presence by examining all 
available Sentinel-2 images within the period 2019-2020. Different aspects of time 
series development are considered, including endmember selection, vegetation 
modelling at different phenological stages, and temporal smoothing of the resulting 
land cover presences. The validity of the resulting time series data is verified by 
comparison with hydrological data measured in situ at a gauging station. Next, we 
demonstrate the ability to make comparisons between different years and satellite 
sensors by producing fraction maps of gravel presence for three different rivers with 
a total combined length of over 250 km and observing a time span of over 30 years 
using Sentinel-2 and Landsat images. Finally, we test the ability of the proposed 
method to detect changes in gravel bars. Both the precision and sensitivity of change 
detection based on fraction maps are verified using VHR reference data. We also 
studied the possibility of monitoring gravel bars using time series data by observing 
how known changes manifest themselves on land cover presence plots. 

We set the following research objectives to reach the aim of the study: 

- study and summarise the characteristics of the processes driving gravel bar 
formation and changes, 

- define the reference data and the validation method for an accuracy 
assessment of the gravel bar maps produced, 

- analyse the characteristics of openly and freely available input satellite 
images that affect the accuracy of fraction maps and select the optimal 
settings that result in the best products, 

- test and validate different strategies for selecting endmembers required for 
the SMA, 

- produce fraction maps of the fluvial environment based on the SMA and 
compare them to the results of a hard classification performed with the 
same input data, 

- develop a time series of land cover presence in the fluvial environment 
based on the created fraction maps, 

- produce fraction maps of gravel presence for several hundreds of kilometres 
of rivers and over a time period of several decades, and 

- assess the ability of fraction maps to detect changes in gravel bars, both by 
comparing two timestamps and by observing a time series of presence data. 

The expected results of different tests combined with validation will provide new 
insights into the potential of using EO data to monitor the natural environment. The 
use of EO data that covers large areas at the same time allows the method to be 
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deployed over a larger area simultaneously. This can overcome technical and 
logistical limitations often associated with field monitoring methods. In addition, EO 
data enables a faster detection of changes. The focus of the study is on gravel bars, 
but the findings could also apply to other small and dynamic features with a distinct 
spectral response. We develop a pioneering process of sub-pixel mapping for change 
detection in gravel bars by adapting, augmenting, and improving existing SMA 
approaches. The developed method enables more accurate monitoring of the 
ecologically and socially important ecosystem. The results of the process and new 
insights into algorithm development will be useful to apply the method to other land 
cover classes in different ecosystems for various purposes in the future. The expected 
results enable more accurate mapping and conservation of areas characterised by 
high spatial fragmentation, such as mountainous areas, as the developed method 
allows the detection of changes that would not be noticeable with input EO data due 
to their spatial resolution. By testing the method in a study area where many 
reference data are available, we aim to develop a workflow that can be applied to 
other locations with a lower abundance of data. In this way, we hope to contribute 
to a wider use of EO data for better monitoring and understanding of the processes 
on the Earth’s surface. 

In addition to technical and applied considerations, the study includes findings 
from a variety of disciplines, including geodesy, geography, and hydrology, with the 
goal to strive towards interdisciplinarity, and wide dissemination of findings about 
the benefits of remote sensing. With the geographical approach of a holistic view of 
space, we aim to bridge the gap between technical sciences, natural sciences, and 
humanities. 

This book has seven chapters. The first (this) chapter is introductory and contains 
the definition of the research problem, the statement of the aim of the study, the 
objectives, and the expected results, and concludes with an overview of the book 
structure. 

The second and third chapters summarise the existing literature that forms the 
basis for the present study. The second chapter focuses on gravel bars, the 
geomorphological processes that form them, the different types and shapes of 
gravel bars, and their role in the wider fluvial system. The third chapter concerns the 
selected method for mapping gravel bars – the SMA. The development of the 
method is presented, followed by a description of the processes, assumptions, and 
formulations associated with the method. The characteristics of endmember 
selection and spectral unmixing, which are the main steps of SMA, are outlined. 



20 

The fourth chapter is central to the book, as it describes the tests conducted to 
develop a workflow that produces the most accurate gravel bar maps. These tests are 
carried out by mapping a selected study area on the Soča River in Slovenia, where 
the river is narrow and gravel bars are abundant. The chapter first describes the data 
and materials used to generate gravel bar maps. It then defines the validation 
method applied to compare different fraction maps. Next, the optimal characteristics 
required for the input satellite images are determined. Subsequently, various 
methods and parameter settings for endmember selection are tested. Land cover 
fraction maps are then generated and compared with the results of hard land cover 
classification using the same input data. Finally, a time series of land cover presence 
is produced based on the proposed fraction mapping method. 

The fifth chapter evaluates the potential of the proposed method for monitoring 
gravel bars. Gravel bar maps are produced for extensive river sections spanning 
several hundred kilometres. The chapter assesses the method’s ability to detect 
changes across multiple aspects, including sensitivity and precision. Change 
detection is evaluated through comparisons of selected fraction maps as well as 
analyses of time-series plots of gravel presence. In addition, results derived from the 
fraction maps are compared with in situ measurements from gauging stations. 

The sixth chapter discusses the results and verifies the proposed research 
objectives. The study is evaluated in terms of its wider context and scientific 
contribution. Identified limitations of the proposed method and possible solutions 
are described. 

The conclusion outlines opportunities for further research and applications. 
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Fluvial ecosystem with gravel bars on the Soča river in 
Slovenia. Gravel bars have, among others, an important 
role in flood protection. 

Foto: Liza Stančič 
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2  
CHARACTERISTICS OF FLUVIAL GRAVEL BARS 

This chapter presents the main concepts related to the motivation for the thematic 
application. In terms of thematic consideration, fluvial gravel bars are described, 
including the geomorphological processes that form them, the patterns of their 
formation, and their role in the larger river system. 

Gravel bars are areas of temporary sediment deposition in riverbeds (Robert, 
2003). They are interesting from both a hydromorphological and ecological 
perspective. Fluvial gravel bars are classified as habitat types that should be 
maintained in a favourable condition as a matter of priority according to the 
European Habitats Directive (EC DG ENVIRONMENT, 2013; OJ L 206, 1992). In 
Slovenia, their importance for environmental conservation was adopted by the 
Decree on Habitat Types (Official Gazette of the Republic of Slovenia, No. 112/03, 
2003). Gravel bars are dynamic and unstable habitats that are sensitive to 
hydrological changes and as such are good indicators of disturbances in the fluvial 
environment (Kiss and Andrasi, 2014). They play a role in water filtration, 
groundwater infiltration, mitigation of river bank erosion, and in increasing the river’s 
attractiveness for recreation (Robert, 2003). Moreover, as contact areas between 
water and land, they represent an important habitat type with high species diversity 
and the occurrence of rare species (Langhans and Tockner, 2014; Zeng et al., 2015). 
In Slovenia, several animal species, such as the birds little ringed plover (Charadrius 
dubius) and common tern (Sterna hirundo), and plant species, such as Chondrilla 
chondrilloides, are closely associated with gravel bars (Richards, 1990; Snow and 
Perrins, 1998; Geršič, 2010). Vegetation sampling on gravel bars in Slovenia 
demonstrated the high diversity of species and communities that develop in such 
habitats (Škornik et al., 2016). The notably high vegetation complexity is caused by 
variable flood disturbance and changing soil properties. These findings highlighted 
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the importance of preserving gravel bars as an integral part of functioning fluvial 
ecosystems (Škornik et al., 2017). Almost 2,300 ha of gravel bars in Slovenia have been 
identified as potential habitat areas of European importance (Jogan et al., 2004). 

The existence of gravel bars is threatened due to in-channel mining (Jogan et al., 
2004; Klaneček et al., 2005). In addition to material extraction, the extent of gravel 
bars is also influenced by other human activities, such as the construction of 
hydropower plants, gravel retention systems, and flood control measures (Geršič, 
2010). Major interventions in the river environment, such as the construction of 
dams, disturb the balance between inflow and outflow of sediments. Planned 
removal, excavation, and emptying of sediments from the river channel is necessary 
in some places due to deposition (Nistor et al., 2021; Ranfl, 2010). Decades of studies 
on impounded rivers have shown that hydropower operations result in numerous 
morphological changes downstream from the dam, including widening of the 
riverbed, reduction in the number of rapids and pools, increase in gravel bars and 
islands, and increase in bedrock outcrops in the riverbed. Daily water discharges 
result in the removal of finer particles. Fewer meanders and sequences of rapids and 
pools reduce the riverbed roughness and increase the carrying capacity of the river, 
i.e., its ability to transport sediments (Assani and Petit, 2004). 

2.1 Geomorphological processes of fluvial sedimentation 
River channels consist of the riverbed, which is permanently or temporally covered 
with water at normal discharge, and river banks, which are the sloping land on the 
edges of the river channel (Mikoš et al., 2002a; Szoszkiewicz et al., 2020). Rivers are 
constantly reshaping their channels. High waters have the largest influence on river 
channel changes. During high water periods, geomorphological processes (erosion, 
transport, and sedimentation) occur with the highest intensity. Erosion actively 
transforms the riverbed, sediments are then transported, and subsequent 
sedimentation transforms the riverbed passively (Ranfl, 2010). Erosion can occur by 
downcutting when the river deepens its own bed, or laterally by wearing away of the 
outer river banks in bends. Sediment transport in the river occurs in solution, in 
suspension, or by traction or saltation along the riverbed. Minerals, dissolved in water 
as it percolates through the soil, are transported in solution. Particles of clay, silt, and 
sand are transported in suspension as suspended load. The largest proportion of 
sediment is usually transported in suspension. The deposition of suspended load 
forms sand bars in the lower river courses (Strahler and Strahler, 2005). Larger, more 
rounded, and heavier sediments are transported along the bottom of the riverbed by 
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bouncing, sliding, and rolling. These are known as bedload and are key for the 
development of gravel bars (Geršič et al., 2014). The amount of transported sediment 
depends on river discharge and flow velocity. The carrying capacity of the river 
increases with the square of its flow velocity (Tarbuck and Lutgens, 2005). Thus, a 
higher carrying capacity can be achieved by a faster flow velocity, a higher discharge, 
a steeper gradient, finer material, a narrower riverbed, and a steeper river bank slope 
(Robert, 2003). 

The geomorphological processes that occur in a given river section depend on 
the relationship between the carrying capacity of the river and the amount of 
sediment present. When the carrying capacity is larger than the sediment amount, 
the riverbed is deepening. When the two quantities are balanced, an equilibrium 
river section is formed. When the sediment amount is larger than the carrying 
capacity, deposition occurs (Ranfl, 2010). 

The relationships between particle erosion, transport, and deposition are shown in 
the Hjulström diagram (Nichols, 2009, 48). Depending on the relationship between 
water flow velocity and particle size, the diagram shows the critical erosion velocity 
curve and the average fall or settling velocity curve. The areas between the curves 
represent different geomorphological processes (Nichols, 2009). 

The carrying capacity of a river can be calculated from average annual discharge 
duration, slope at the riverbed bottom, width of the riverbed bottom, slope of the 
bank cross-sections, and mean sediment grain size (Mikoš et al., 2002b). The average 
annual discharge duration curve is obtained by arranging the chronologically sorted 
hydrological data on discharges from the hydrogram by size. Data on mean sediment 
grain size are obtained by analysing the grain size of sediments from samples 
collected in situ (Ranfl, 2010). 

2.2 Gravel bar formation 
To develop a method for gravel bar mapping it is necessary to understand the 
processes of gravel bar formation in order to know where in the river bed gravel bars 
can be expected. Even more importantly, the dynamics help to explain the patterns 
of their disintegration and re-establishment. This is key for successful monitoring and 
accurate interpretation of results. Robert (2003) distinguishes between different 
gravel bar types based on the processes that formed them. Accordingly, gravel bar 
types are divided into two main categories – unit and complex bars. Complex bars 
are formed in successive periods of erosion and deposition. Unit bars are formed only 
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by deposition and have a stable morphology. Longitudinal, transverse, point, and 
diagonal bars are different types of unit bars. In complex settings, it is difficult to 
make a clear classification because the bars are formed by different combinations of 
processes. In the case of complex gravel bars, we can distinguish all the above forms 
as well as the medial and lateral bars (Figure 1). In addition to the classification 
according to the formation processes, it is also common to classify gravel bars 
according to their position in the riverbed. In this respect, there are two main types 
of fluvial gravel bars. The first type includes bars that form in the middle of the 
riverbed. The second type consists of bars along the river bank. Despite different 
specific classifications, it should be noted that one bar type can be transformed into 
another over time (Robert, 2003). 

 
Figure 1: Fluvial gravel bar types (after: Robert, 2003). © André Robert. 



26 

The main reason for gravel bar formation is a local reduction in the carrying 
capacity of a river. This often occurs in the inner part of river bends, where friction 
losses lead to a reduction in flow velocity and thus to a smaller carrying capacity. As 
a result of the reduced carrying capacity, sediment deposition occurs. The deposited 
sediments cause further friction, and so the sedimentation process continues 
(Tarbuck and Lutgens, 2005). 

Gravel bars can also form in the middle of the river channel. Where the shear force 
is close to the critical force for particle displacement, patches of bedload sediment 
pushed along the bottom of the riverbed may begin to deposit. In the first stage of 
gravel bar formation, coarser bedload material is deposited in the area between 
individual river flows with higher carrying capacities. Later, finer material is deposited 
behind larger particles in these areas of lower carrying capacity. Other sediments that 
are being pushed along the riverbed bottom continue to accumulate on these areas 
of deposition, causing the gravel bar to grow in width and length (Robert, 2003). Due 
to the resulting hydro-morphological feature, the river flow is divided into two parts 
(Kiss and Balogh, 2015). 

The described deposition in the form of a mid-channel gravel bar is one of the 
formation mechanisms of branched or braided streams. A second characteristic 
mechanism is the transition of a transverse gravel bar to a mid-channel bar, also 
under the influence of sediment patches pushed along the riverbed. Additionally, 
braided streams may develop through processes of erosion. When a gravel bar is 
dissected, a new river channel is formed by erosion of a side bar. Another erosional 
process in river braiding is the disintegration of bars into a network of channels with 
intermediate bars due to deposition in the form of characteristic sedimentary 
tongues (Figure 2). There are two other important braiding processes. The first is the 
formation of successive straight and narrow chutes and downstream deposits in the 
form of lobes. The last important branching process is the relatively sudden 
switching of river flow from one channel to another (Robert, 2003). 

Gravel bars are normally part of the riverbed. The height of gravel bars is usually 
lower than the height of the top of the river channel. As the height of gravel bars 
increases and they are covered by permanent vegetation, gravel bars can develop 
into fluvial islands. These represent more stable features as they are not removed by 
regular floods (Kiss and Andrasi, 2014). Despite the different names, gravel bars and 
fluvial islands are features with similar origins and morphological characteristics 
(Robert, 2003). 
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Figure 2: Braiding processes and depositional morphology (after: Robert, 2003). © André Robert. 

2.3 The role of gravel bars in the fluvial gravel regime 
The shape of gravel bars and the size of deposited particles depend on the average 
slope of the riverbed and the river discharge. Sediments at the bottom of the riverbed 
can be divided in two layers – an upper and a subsurface layer. The upper layer has a 
coarser particle composition because river flow washes out the finer particles, while 
the coarser particles remain in place because of their weight. Generally, particles of 
similar size to those already present at the riverbed bottom remain in place. Thus, the 
largest particles are deposited in erosion pools, coarser material in gravel bar heads, 
and finer material at bar edges. The reason for the removal of particles that have a 
different size structure than those already present is the turbulence of the river flow. 
Turbulence is low in the pools, then increases until the head of the bar and remains 
high until the next pool. Large deposited particles on the bar head increase 
turbulence, reducing the likelihood of smaller particles being deposited near them 
(Robert, 2003). The diversity of sediment sizes decreases in lower river reaches (Ranfl, 
2010). 
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Based on several sources, Robert (2003) notes that the patterns of flow and 
deposition of particles in channels along the central bars are similar to those in 
individual meandering riverbeds. In bends, the water flow is moved towards the 
outer bank under the influence of centrifugal force. This leads to an increase in water 
level in the outer part of the riverbed, especially in fast flows and sharp bends. Due 
to the locally unbalanced forces of gradient and gravity, a secondary flow is formed. 
At the water surface, the secondary flow runs towards the outer bank, while at the 
bottom of the riverbed it flows towards the inner bank. Gravel bars form and grow 
on the inner part of the bend (Figure 3). 

 
Figure 3: Model of secondary flows, sediment sorting, and downstream deposition of finer 
particles in a gravel bar. The arrows on the image of the gravel bar indicate the direction of bedload 
transport. The arrows on the cross-sections indicate the flow direction and secondary circulation 
(after: Robert, 2003). © André Robert. 
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The highest carrying capacity of a river is at peak discharge. As discharge 
increases, material is removed from upstream parts of gravel bars, and as discharge 
decreases, material begins to be deposited. At the topographically highest parts of 
gravel bars, reverse processes occur – deposition when discharge is high and erosion 
when discharge is low. Although the particular material that makes up gravel bars is 
changed at higher discharges, the location of bars in the riverbed usually does not 
change (Robert, 2003). 

Gravel bars are typical features of braided rivers. Gravel bar head consists of 
shallow rapids which have a higher gradient and roughness in a general area of lower 
gradient. Rapids form across the riverbed as water flows over larger rocks. In an area 
of rapids, the river flow is shallow and fast. The basic unit of braided rivers is the pool, 
which is located upstream of the gravel bar. The pool is a larger depression in the 
riverbed bottom where the river flow slows down (Ranfl, 2010). Some authors also 
consider the combination of a pool and gravel bar as the basic unit of a riverbed. In 
braided rivers, pool and bar units line up next to each other in parallel rows. The 
sequence of pools and bars forms the third basic unit of braided streams, namely a 
series of river confluences and bifurcations (Robert, 2003). 

The number, location, shape, composition, and size of gravel bars indicate the 
geomorphological processes occurring in the river channel. Gravel bars are also very 
dynamic features that can be easily and rapidly changed. They are therefore good 
indicators of alterations in the fluvial environment. Gravel bars that form above the 
river flow surface can be observed with optical remote sensing. The wide availability 
of free and open satellite images allows rapid detection of changes in gravel bars and 
monitoring of associated processes. 
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Gravel bars are a very specific habitat at the interface 
between land and water and are therefore home to a 
variety of specialised species that are adapted to the 
particular conditions. 

Foto: Liza Stančič 
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3  
THEORETICAL BACKGROUND OF SPECTRAL MIXTURE 
ANALYSIS 

 

This chapter outlines the background of the method proposed for mapping and 
monitoring gravel bars in narrow rivers – spectral mixture analysis (SMA). The 
theoretical framework of the main method components and the associated 
terminology are outlined. 

To enable the use of free and open data for monitoring narrow rivers in 
mountainous environments, a land cover fraction mapping method, based on the 
spectral mixture analysis (SMA) is proposed. The origins, main concepts, and existing 
applications of SMA are presented in the next chapters. 

The SMA can mitigate mapping limitations associated with the spatial resolution 
of satellite images (Atkinson, 2005; Foody et al., 2005). With SMA, it is possible to 
perform thematic mapping at sub-pixel level by determining the proportion of 
selected land cover classes in each pixel (e.g., Ling et al., 2016; Mylona et al., 2018). 
This is done by comparing the spectral signature of each pixel with those of the 
selected land cover classes of interest. The spectral signatures of the target land cover 
classes are therefore key information for the SMA. Pure pixels that contain only one 
land cover class and represent the extreme points in spectral space are referred to as 
endmembers (Keshava, 2003; Somers et al., 2011; Veganzones and Graña, 2008). 

The original purpose for developing SMA was to observe rock surface and mineral 
composition on Mars (Adams et al., 1986). The method has since been used for 
various objectives, including land cover mapping (Ling et al., 2016), forest 
disturbance detection (Hirschmugl et al., 2014), determining land cover fractions in 
urban areas (Kärdi, 2007; Priem et al., 2019), monitoring urban expansion (Aina et al., 
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2019), soil degradation monitoring (Dubovyk et al., 2015), grassland monitoring 
(Shao et al., 2018), river bank mapping (Niroumand-Jadidi and Vitti, 2017), and 
coastline mapping (Foody et al., 2005; Muslim et al., 2007). Both hyperspectral 
(Keshava, 2003; Somers et al., 2011) and multispectral images have been analysed 
with SMA, including images acquired by Landsat (Wu, 2004) and Sentinel-2 (Mylona 
et al., 2018) that were used in this study. 

3.1 Endmember selection 
Several methods for selecting (also known as extracting) endmembers have been 
proposed. Both the number and the spectral properties of endmembers have to be 
selected. Determining the sufficient number of endmembers to correctly describe 
the variability in a scene usually involves testing different configurations and 
selecting the one that yields the smallest error (Somers et al., 2011). Endmember 
spectral signatures can be obtained from available spectral libraries, created using 
laboratory or field measurements with spectro-radiometers (Schmidt and Scarth, 
2009). Alternatively, endmembers can be selected from image pixels themselves. 
However, this is only possible if the land cover types in the analysed image occur in 
such a formation that pure pixels are present. If all pixels are mixed, non-pixel 
endmembers can be estimated based on the image data (Du, 2018). 

We used the N-FINDR algorithm for automatic selection of image endmembers. It 
is an established method that has been shown to be effective in finding distinctive 
pixels (Du, 2018). The algorithm determines the endmembers by searching for the 
user-defined number of pixels which form the extremities of a geometric body with 
the largest volume in the multidimensional space defined by the number of input 
image bands. 

To begin with, a random set of pixels is selected and the volume of the geometric 
body that they outline is calculated (Figure 4). Then, one of the pixels is swapped with 
a different new pixel and the volume of the newly formed geometric body is 
calculated. If the new volume is larger than the previous volume, the first pixel is 
replaced by the second pixel as a potential endmember. This process continues until 
no more pixels can be exchanged (Winter, 1999). 
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Figure 4: An example of endmembers selected as extreme points in a two-dimensional spectral 
space. 

3.2 Spectral unmixing 
The SMA works by modelling the reflectances of mixed pixels. The method converts 
the reflectance in a satellite image to fractions (also known as abundances) of the 
selected land cover classes using information about the spectral characteristics of 
endmembers, i.e., the spectral representations of pure land cover classes. The 
methods of modelling can be divided into linear and nonlinear. The choice of the 
model reflects the expected mechanism of spectral signal mixing in the analysed 
image. Linear mixing occurs when different land cover classes exist in a spatially 
bounded formation. The key physical assumption of linear SMA is that each incoming 
photon reacts with only one land cover type. Conversely, nonlinear mixing occurs 
where different materials are closely intertwined. In such cases, spectral signal mixing 
is more complex because each single incoming photon reacts with numerous 
different land cover types resulting in multiple scattering effect (Keshava, 2003; 
Keshava and Mustard, 2002). 

Nonlinear mixing often occurs in analysis of sand or soil when many different 
materials appear very close together. Simplifications and assumptions are often 
necessary to enable nonlinear mixture modelling. The bilinear model is commonly 
used with the assumption that the product of two or more endmembers represent 
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the multiple scattering effect. If we consider p endmembers and only take into 
account scattering between two endmembers a signature matrix Mே௅ can be defined 
as [m1, m2, ..., mp, m1m2, …, mp−1mp]. A pixel vector r can then be expressed as (Du, 
2018): 

 r ൌ  Mே௅ ∝ே௅ ൅  ε (1) 

with ∝ே௅ representing an abundance vector combining linear and nonlinear 
abundances. Subsequently, an ordinary least squares solver can be applied to 
estimate ∝ே௅ (Dobigeon et al., 2014; Heylen et al., 2014). 

However, in modelling land cover, linear spectral mixing is considered more often 
as the different land cover classes are not as intermixed as for example different 
materials in soil. In line with the assumptions of linear spectral mixing, the mixed pixel 
signal (r) can be described as a combination of endmember spectral signals, 
weighted by sub-pixel land cover presence. The model is therefore described as 
follows (Adams et al., 1986; Somers et al., 2011): 

 r ൌ  Mf ൅  ε (2) 

where m is an array with columns representing the spectral signatures of selected 
endmembers, f is a vector of land cover presence fractions, and ε is noise or signal 
fraction that cannot be modelled with the selected endmembers. 

The described equation can be solved if the spectral signals of endmembers are 
known and the number of endmembers is less than the number of spectral bands in 
the analysed image. Commonly used equation solvers are quadratic programming, 
maximum likelihood method, and least squares method. The SMA can be applied 
without constraints, but to obtain physically meaningful results, the coefficient 
values in Equation (2) are often restricted to positive numbers. An additional 
condition that can be implemented is that the sum of the coefficients must equal 
one. When the outlined conditions are applied, the resulting SMA can be described 
as fully constrained (Somers et al., 2011). 

After establishing the theoretical background related to the geomorphological 
features under observation – fluvial gravel bars – this chapter provided an overview 
of the method proposed for monitoring. The method development, the key steps, 
and examples of existing applications were presented. The next chapter describes 
the main tests and decisions made in relation to the development of an SMA-based 
method for gravel bar monitoring.  
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The self-purifying capacity of a river is increased by the 
presence of gravel bars as water filtrates through particles 
of different sizes. 

Foto: Liza Stančič 
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4  
METHODS 

 

The chapter describes the process of selecting the most appropriate method for 
mapping gravel bars with SMA. Characteristics of input satellite images and reference 
data are presented first. Next, the validation process for comparing different 
methods is explained. Then, the most optimal characteristics of input satellite images 
are chosen, followed by an overview of the endmember selection process. The 
resulting soft classification using SMA is then compared to the results of a hard 
classification. The chapter concludes with a description of tests associated with the 
development of a land cover time series. 

4.1 Data and materials 
Fluvial gravel bar mapping was performed using Landsat and Sentinel-2 optical 
satellite images. Additionally, a vector layer of water lands was used to delineate the 
area of analysis. Finally, WorldView-2 and Pléiades very high resolution images along 
with areal orthophotos were used for validation. A detailed description of the data 
used is given in the following subchapters. 

4.1.1 Input satellite images 
Passive Landsat and Sentinel-2 optical satellite images were used as input data. 
Landsat is a system of the United States Geological Survey (USGS) that has been in 
operation since 1972 (Barsi et al., 2014; Wulder et al., 2019). Gravel bars can be 
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mapped with images acquired by the Thematic Mapper (TM)1, the Enhanced 
Thematic Mapper Plus (ETM +)2, and the Operational Land Imager (OLI)3 sensors. 
Since 1982, Landsat has been providing images with a spatial resolution of 30 m and 
a temporal resolution of 16 days. The images consisted of seven bands until the 
launch of Landsat 7 with the ETM+ which introduced the additional panchromatic 
band. From 2013 onwards, OLI and the Thermal Infrared Sensor (TIRS) enable sensing 
in three additional bands (coastal aerosol, cirrus, and additional thermal band), 
bringing the total number of bands in Landsat images to eleven. 

The Sentinel-2 system is operated by the European Space Agency (ESA) for the 
European Commission. Sentinel-2 images acquired with the Multi-Spectral 
Instrument (MSI) sensor have spectral characteristics that are similar to Landsat; 
Sentinel-2 acquires images in 13 comparable spectral bands (Figure 5). The images 
have spatial resolutions of 10 m, 20 m, or 60 m, depending on the spectral band 
(Table 1). The first satellite – Sentinel-2A – was launched in June 2015 and the second 
– Sentinel-2B – in March 2017, increasing the temporal resolution of the system at 
the equator from ten to five days (Drusch et al., 2012; Gatti and Galoppo, 2018). 

 
Figure 5: Spectral bands of Landsat 7, Landsat 8, and Sentinel-2 (source: NASA, 2015). 

  

 
1 The TM sensor was carried on board Landsat 4, which was operating from 1982 until 2001, and Landsat 5, 
which was operating from 1984 until 2013. 
2 The ETM+ sensor is carried on board Landsat 7, which has been operating since 1999 until present. The 
scan line corrector of the sensor failed in 2003 resulting in approximately 25% data loss for any given scene. 
3 The OLI sensor is carried on board Landsat 8, which has been operating since 2013 until present. 
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4.1.2 Water cadastre 
The Water Lands dataset from the Water Cadastre maintained by the Slovenian Water 
Agency was selected to focus our observation area on riparian zones (Slovenian 
Water Agency, 2021a). Water lands of inland running waters comprise the riverbed 
up to the first significant geomorphological transition. River banks and active gravel 
bars are therefore included in the analysis. The dataset was developed in accordance 
with the Water Act (Official Gazette of the Republic of Slovenia, No. 67/02, 2002) and 
is based on the map of surface waters. During a pilot study in 2011, surface waters 
were mapped on 10% of the area of Slovenia that included the larger river valleys. 
The approach was based on stereorestitution from cyclic aerial photography of 
Slovenia (CAS). The main challenge in the pilot approach was the detection of water 
surfaces under canopy, especially because CAS is conducted during the leaves-on 
period due to the requirements of agriculture monitoring. Aerial laser scanning (ALS) 
data acquired during a pilot campaign in 2011 provided a new source for mapping 
surface water, so the mapping method was updated in 2012. The final method used 
stereo pairs of the latest CAS images as the basis for data collection, with ALS 
acquired in 2014 and 2015 and derived products supporting interpretation and 
mapping in forested areas. In 2015 and 2016, surface waters on the remaining 90% 
of Slovenia were mapped using this method (Geodetic Institute of Slovenia, 2021). 
The minimum width of the mapped running surface water is 1 m. The positional and 
vertical accuracies of the acquisition are ± 1 m. 

4.1.3 Definition of land cover classes of interest 
In line with our research question we considered three land cover classes that are 
most widely present in riparian environments – gravel, vegetation, and water. The 
characteristics of SMA require that we consider land cover classes with very different 
spectral signatures. If we examined classes with similar spectral signatures, it would 
be very difficult to determine their individual contributions to the spectral signal 
from a particular signal. Thus, some simplifications were necessary when selecting 
the land cover classes to be considered. The gravel class included gravel bars, rocks 
and boulders, sand, and built-up areas. We minimised the intrusion of built-up areas 
and focused our analysis on gravel bars by restricting the area of observation to the 
extent of water lands with the data set described above. The vegetation class 
included trees, shrubs, and grassland. The water class included rivers, streams, and 
standing water. Shade can sometimes erroneously be mapped as water, therefore we 
tested the possibility of mapping it as a separate class, as described in chapter 4.4.3. 
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4.2 Validation of fraction maps 
Three different approaches were tested for the validation of land cover fraction maps. 
First, a pixel-based approach using aerial orthophotos as reference was 
implemented. In the second approach, the maps were also validated on a per-pixel 
basis, but using in situ land cover mapping as reference. The pixel-based approach 
can be seen as providing site-specific accuracy (Campbell and Wynne, 2011). We also 
implemented an area-based validation approach which provides non-site-specific 
accuracy to account for possible misalignment of pixels due to errors in satellite 
image geometry (Figure 6). 

 
Figure 6: Validation of fraction maps. 

4.2.1 Case study area 
A section of the Soča river in north-western Slovenia, Central Europe, was selected to 
test different methods for mapping and monitoring gravel bars. The selected river 
section is approximately 15 km long and is centred on 46.2° N, 13.6° E. The section is 
located between the settlements of Kobarid and Tolmin (Figure 7). 

The bedrock in the area consists of limestone and dolomite (Geological Survey of 
Slovenia, 2019). The climate is mountainous to temperate Mediterranean with most 
of the area belonging to the temperate climate with no dry season and a warm 
summer – Cfb – according to the Köppen-Geiger classification (Ogrin, 1996; Ogrin 
and Plut, 2009). The flow regime of the river is nivo-pluvial with the main discharge 
peak in April or May due to snowmelt. There is a secondary discharge peak in 
November due to heavy autumn rainfall. The main low discharge period is in January 
or February as precipitation is temporally stored in the form of snow. The secondary 
low discharge period is in August when evapotranspiration is highest (Ogrin and Plut, 
2009). Precipitation is very high in this area, averaging over 2500 mm annually for the 
last 50 years (Slovenian Environment Agency, 2021a). 
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Figure 7: Location of the study area (red rectangle) in the upper Soča river basin, north-western 
Slovenia, Central Europe. The red rectangle indicates the entire study area, while the purple 
rectangle marks the location of the enlarged view in Figure 25. Data source: Surveying and 
Mapping Authority of the Republic of Slovenia, 2016, 2021a, 2021b, Natural Earth, 2020. 

 

 
Figure 8: Land cover of the study area. The arrows show the viewing direction of photographs. 
Data source: Ministry of Agriculture, Forestry and Food of the Republic of Slovenia, 2020; Slovenian 
Water Agency, 2021a; photographs: Liza Stančič. 
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The terrain in the Soča basin in Slovenia is varied, ranging from 153 m to 2864 m 
above sea level. The combined effect of topography and precipitation results in high 
erosion rates and consequently large amounts of river bedload in the Soča. The 
selected river section contains several gravel bars and is therefore very suitable as a 
test area. In addition, the river is often not wider than 20 m, making the section 
interesting for the application of SMA. The wider study area was narrowed down to 
the extent of the water lands (Slovenian Water Agency, 2021). Most of the study area 
is covered by water, followed by gravel bars and deciduous forest (Figure 8). 

4.2.2 Pixel-based validation 
The pixel-based validation method compared land cover fractions derived from SMA 
with those observed in reference data at the pixel level (Schug et al., 2018). This 
validation provides site-specific accuracy by assessing agreement between fraction 
maps and reference data at specific locations (Campbell and Wynne, 2011). We used 
aerial orthophotos, very high resolution satellite images (WorldView-2, Pléiades), or 
own field mapping as reference data sources. Independent of the reference data, 50 
random plots were selected in the study area. Their size corresponded to the spatial 
resolution of satellite images and covered the extent of one pixel. Within each plot, a 
regular grid of 100 points was created and the land cover class at each point was 
determined. Reference land cover fraction values were calculated and compared to 
fractions obtained from the SMA. The comparison was then made by computing the 
mean absolute error (MAE) (Equation (3). 

 
MAE ൌ  
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௡

௜ୀଵ
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as the absolute difference between the land cover fractions on the reference data (x) 
and the land cover fractions derived from the SMA (xi) (Demarchi et al., 2012; Okujeni 
et al., 2018; Li, 2021). The value of MAE was calculated for all 50 plots (n = 50). 

4.2.2.1 Aerial Orthophotos 

In the programme of the CAS, aerial orthophotos are acquired each year for about 
one-third of Slovenia. Thus, the same area is imaged once every 2 to 4 years. The 
timing of the imaging varies depending on weather conditions. For the study area, 
the three orthophotos were acquired on 26 June 2015, 14 October 2017, and 5 
September 2020. Visible spectral bands are available with a spatial resolution of 
0.25 m and 0.5 m, and a near infrared band is available with a spatial resolution of 
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0.5 m. All of the available products are acquired simultaneously and later pan-
sharpened and resampled as needed (Surveying and Mapping Authority of the 
Republic of Slovenia, 2021c). The positional accuracy of aerial orthophotos is 0.2 m 
(Surveying and Mapping Authority of the Republic of Slovenia, 2021c). 

4.2.2.2 Field Mapping 

A field mapping campaign was conducted in the study area from 25 April 2020 to 3 
May 2020. We randomly selected 50 plots with an extent of 60 m × 60 m. Plots were 
sized to fit at least one whole pixel of each of the analysed satellite images into each 
mapped plot. The selection of plots to be mapped was done by first plotting a grid 
of 60 m × 60 m over the entire study area. Subsequently, we used the Random 
selection function in the QGIS software (version 3.10) to select 50 plots across the 
entire study area (QGIS Development Team, 2020). The most recent aerial 
orthophotos available at the time, acquired on 14 October 2017, were used as 
background on which changes were recorded. Therefore, the positional accuracy of 
the field mapping can be considered identical as that of the aerial orthophotos 
(0.2 m). We mapped the three land cover classes of interest – gravel, vegetation, and 
water – at a scale of 1:1000. The plots selected for field mapping were mostly covered 
by vegetation (Figure 9). 

 
Figure 9: Land cover presence as determined with field mapping on 50 randomly selected plots. 

4.2.3 Area-based validation 
The geolocation accuracy of Sentinel-2 images is known to be within 11 m for 95% of 
the images (Clerc and MPC Team, 2021). However, even small shifts can lead to 
considerable inaccuracies when analyses are performed at the level of single pixels. 
To account for such potential errors, we also carried out a validation of the fraction 
maps at the scale of the entire study area (Li et al., 2020). This constituted the area-
based validation. The result of area-based validation is non-site-specific accuracy as 
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it reports the agreement between fraction map and reference data in terms of the 
overall figures and not at specific locations (Campbell and Wynne, 2011). The extent 
of each land cover class of interest was calculated using the fraction maps and 
compared with the extents based on reference data. Different sources for obtaining 
reference data were tested, namely manual digitisation and supervised classification 
based on machine learning (ML). For both methods of obtaining reference data, 
aerial orthophotos were used as input images. Additionally, very high resolution 
satellite images were used for machine learning-based classification. 

4.2.3.1 Manual Digitisation 

Based on aerial orthophotos acquired on 26 June 2015, we manually delineated three 
land cover classes – gravel, vegetation, water –, and shade for ten non-contiguous 
areas along the study river section, totalling 0.8 km2. The scale of digitisation was 
1:1500. The digitisation required approximately eight operator hours in total. 

4.2.3.2 Machine Learning-Based Classification 

Supervised ML-based classification was also used to provide the reference data. 
Training samples were selected from areas with uniform land cover based on either 
aerial orthophotos or VHR satellite images. We compared the Random Forest (RF) and 
Support Vector Machine (SVM) classification algorithms. For classification based on 
RF, 2000 training samples in the form of random pixels were selected from the 
predefined areas with uniform land cover. Classification models with 500 decision 
trees and with 1000 decision trees were built for comparison. For the SVM, a kernel 
with radial basis function was chosen. Again, two different models were tested, one 
based on 1000 training samples and a second based on 2000 training samples. Model 
training and image classification were performed in the R programming language (R 
Core Team, 2021) using the packages randomForest (Liaw and Wiener, 2002) and 
e1071 (Meyer et al., 2021). Based on the four classification models described above, 
we produced land cover maps of the water lands in the study area from aerial 
orthophotos and VHR satellite images. 

We compared the different area-wise reference datasets based on the detected 
presence of the land cover classes of interest (Figure 10). The area classified by ML 
was cropped to the extent covered by manual digitisation so that exactly the same 
area was considered. The classification methods based on ML performed very 
similarly, with differences between the various results within 1.5%. The largest 
difference was recorded for the vegetation class, which was also the most widely 
represented in the analysed area. 
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Figure 10: Presence of the different land cover classes of interest in the reference datasets 
considered. 

Compared to manual digitisation, ML-based classification performed worst in 
classifying water, which was under-detected. Shade was also under-detected with 
the ML-based method, while gravel and vegetation were over-detected. Oversizing 
of river bar areas is also in line with existing literature (Kryniecka and Magnuszewski, 
2021). One possible reason for the misclassifications of gravel is that shallow water 
areas have a very similar spectral signal to gravel because the spectral signal of gravel 
from the riverbed can pass through clear water and be recorded by the sensor. 
Manual classification did not classify single pixels, but took into account connected 
land cover areas and was therefore not influenced by the reflectances of single pixels 
in shallow water. As for shade, its under-detection with ML-based methods may be 
explained by the fact that shade can also be found within vegetated areas in small 
extents and so it could be falsely included within the vegetation class by the ML 
algorithms. Nevertheless, the manual and the ML-based classifications give 
comparable results. The ML-based classification will be used for validation in other 
areas on the Soča, Sava, and Vjosa rivers, because it is faster (Schwarz et al., 2003; 
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Ilsever and Unsalan, 2013; Rastiveis et al., 2013; Hölbling et al., 2017) and produces 
more consistent results (Tarko et al., 2018; Kraff et al., 2020). 

As all of the ML-based classifications gave very similar results, the main decision 
point for selecting one of them for further work was speed (computing time). We 
measured the times required for model training and image classification of all tested 
configurations (Table 2). Classification of an area of 109.7 km2 with a spatial 
resolution of 0.5 m took over three hours. The fastest method was the one using a RF 
algorithm with 500 trees, therefore this configuration was selected for further 
reference classifications. 

Table 2: Computing time for training different machine learning-based classification models and 
classification of an orthophoto with a spatial resolution of 0.5 m and an area of 109.7 km2. 

model RF 500 
trees 

RF 1000 
trees 

SVM 1000 
samples 

SVM 2000 
samples 

train time (h:min:s) 0:00:56 0:01:35 0:11:33 0:38:31 
classification time (h:min:s) 3:06:05 3:12:18 3:01:05 5:48:08 
total time (h:min:s) 3:07:01 3:13:53 3:12:38 6:26:39 

 

4.2.3.3 Spatial Resolution of Reference Data 

Aerial orthophotos are available with a spatial resolution of 0.25 m. They need to be 
classified to be used as reference data, which is a computationally intensive process. 
However, orthophotos are also available at a 0.5 m resolution. We were interested in 
whether the different spatial resolutions give comparable results in the validation of 
the fraction maps. We therefore used identical training samples and classification 
algorithms, but applied them to reference data with different resolutions. 

We then calculated the presence of each land cover class of interest in the 
reference datasets with different spatial resolutions (Figure 11). Classification of 0.5 m 
images was twice as fast as that of 0.25 m images. We found that the differences in 
the presence of land cover classes between the two maps were within 0.32% and 
thus can be considered negligible. Based on these findings, 0.5 m reference data can 
be recommended for validation. 

It is important to note that data used for ground truth cannot be considered error-
free (Carlotto, 2009). An accuracy assessment of the reference data for the year 2015 
showed an overall accuracy of 98%. This is reasonable, since we are only considering 
three land cover classes with very different spectral characteristics. The accuracy of 
reference data is thus sufficient for further analysis. Nevertheless, we must keep in 
mind that ground truth contains errors and can be a source of uncertainty when 
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benchmarking different results (Chehdi and Cariou, 2019). Indeed, claims have been 
made that the term “ground truth” is inappropriate in itself and should be replaced 
by terms such as “surface observations” or “field measurement” (Woodhouse, 2021). 
We use another of terms proposed in the literature – “reference data”. 

 
Figure 11: Presence of the land cover classes of interest on reference datasets with different spatial 
resolutions. 

4.2.4 Comparison of pixel-based and area-based validation 
We compared the results of pixel-based and area-based validation in terms of which 
fraction map achieved the highest accuracy for each of the land cover classes 
considered (Table 3). Five different land cover fraction maps were considered, each 
based on different input data: 

- a Sentinel-2 image with endmembers selected on the same image, 
- a Sentinel-2 image with endmembers transferred from a different image, 
- a Landsat 7 image with endmembers selected on the same image, 
- a Landsat 8 image with endmembers selected on the same image, and 
- a Landsat 8 image with endmembers transferred from a different image. 
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Table 3: Comparison of pixel-based and area-based validation results. The most accurate 
fraction maps for each land cover class are given. 

land cover class 
most accurate fraction map 

pixel-based* area-based** 
gravel Sentinel-2 – same image endmembers Sentinel-2 – transferred endmembers 
vegetation Sentinel-2 – transferred endmembers Sentinel-2 – same image endmembers 
water Sentinel-2 – same image endmembers Sentinel-2 – transferred endmembers 
total Sentinel-2 – transferred endmembers Sentinel-2 – transferred endmembers 
* automatic endmember selection 
** shade areas excluded from samples 
 

Both validation methods indicate that the most accurate map overall is the one based 
on the Sentinel-2 image with transferred endmembers. The transferred endmembers 
consist of two endmembers describing water reflectance, resulting in better 
separation between gravel and water and consequently more accurate fraction 
maps. As both validation methods give similar results, they are used interchangeably 
in subsequent tests. 

4.2.5 Conclusions on validation method 
The test area on the Soča between the settlements of Kobarid and Tolmin is a suitable 
study area for the development of gravel mapping methods. Sufficient reference and 
auxiliary data are available to allow validation of the method and interpretation of 
the results. Two different validation methods were developed, one based on 
comparing pixel-wise land cover fractions and the other evaluating the presence of 
different land cover classes in the study area as a whole. The pixel-based validation 
method was used first and the area-based method was developed later due to 
concerns related with the geometric accuracy of satellite images. The two validation 
methods produced similar results in selecting the most accurate fraction maps. 
Therefore, the different methods and configurations in the next chapters are 
validated using both proposed methods interchangeably. We followed a pragmatic 
approach where the tests done at the beginning of the study were validated using 
the pixel-based method while tests conducted later were validated using the area-
based method. 

The next chapter focuses on the investigation of satellite image properties that 
affect the accuracy of the SMA. 
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4.3 Characteristics of satellite images used 
Together with endmember spectral signatures, satellite images are the main input to 
the SMA (Figure 12). Providing images with suitable properties is therefore key for 
accurate results. We first examined the differences between Sentinel-2 and Landsat, 
two of the most commonly used optical EO systems. We then tested the influence of 
different pre-processing corrections and the contribution of different spatial 
resolutions of the input satellite images. Finally, we explored the influence of 
complementing the spectral bands of the satellite images with different spectral 
indices. 

 
Figure 12: Satellite images used. 

4.3.1 Remote sensing systems used as sources of satellite 
images 

Sentinel-2 and Landsat have comparable spectral characteristics. However, an 
important difference between the two systems is their temporal resolution as 
outlined in chapter 4.1.1; Landsat provides longer time series starting in 1982 with a 
revisit time of 16 days, while Sentinel-2 has denser time series with a revisit time of 5 
days but only since 2017. In gravel bar monitoring, long time series enable insights 
into the impacts of many different flood, rockslide, infrastructure interventions, and 
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other events in the past which can inform about the possible impacts of similar 
events in the future. On the other hand, denser time series make it possible to 
observe the process dynamics in greater details and closer to the real time. We 
investigated whether data from the two remote sensing systems produce 
comparable results and if the outputs can be used interchangeably to take 
advantage of the most favourable characteristic of each system. 

Two Sentinel-2 images, a Landsat 7, and a Landsat 8 image were used for the 
comparison. The Sentinel-2 images were acquired on 11 July 2015 and on 23 April 
2020, the Landsat 7 was acquired on 9 July 2015, and the Landsat 8 image was 
acquired on 25 April 2020 (Figure 13). 

 
Figure 13: Overview of the satellite images used in the analysis; true colour composites. Data 
source: ESA, 2021; U. S. Geological Survey, 2021a, 2021b. 
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The endmembers used for SMA of the different images were calculated based on 
the average reflectance values of pure pixels. Pixel selection was done manually, 
using reference data to ensure pixel purity. Four pixels were used to calculate the 
gravel endmember, nine for surface water, and 20 for vegetation. The number of 
pixels used was identical for the different images and was limited by the number of 
pure pixels that could be detected on the Landsat images. The Landsat images have 
a lower spatial resolution than the Sentinel-2 images and therefore fewer pure pixels.  

The resulting land cover fraction maps were validated with the pixel-wise 
method. Aerial orthophotos, acquired on 26 June 2015, were used to validate the 
2015 maps, while field mapping was used as reference for the 2020 maps. 

The results indicate that comparable fraction map accuracies can be achieved 
using Sentinel-2, Landsat 7, and Landsat 8 images (Table 4). We report the MAE as the 
selected accuracy measure for land cover fraction maps (Schug et al., 2018; Suess et 
al., 2018). The MAE is less than 0.1 for most of the land cover classes of interest on the 
majority of images which means that the land cover fractions are correct within ± 
10%. Vegetation is the most problematic, with MAE of 0.11 on all maps. Vegetation 
in the study area occurs in many different forms. We attempted to account for this 
variability by selecting a large number of different pixels from which the vegetation 
endmember was computed. However, certain vegetation types are still spectrally 
more similar to water or gravel and are therefore misclassified. Furthermore, it is 
apparent that the fraction maps based on Landsat 7 achieve the lowest accuracies. 
Landsat 7 is the oldest of the three remote sensing systems considered, imaging 
since April 1999. Compared to Landsat 8, it has a lower radiometric resolution and 
wider spectral bands (Irons et al., 2012; Roy et al., 2016), leading to larger errors in 
spectral analysis. Nevertheless, in all cases gravel fractions are mapped very 
successfully (Table 4), which means that all tested remote sensing systems can be 
used for monitoring gravel bars. 

Table 4: Pixel-wise mean absolute error of land cover fraction maps per land cover class for 
different analysed satellite images using manually selected endmembers. The best results per land 
cover class in bold. 

land cover class Landsat 7, 
9.7.2015 

Sentinel-2, 
11.7.2015 

Landsat 8, 
25.4.2020 

Sentinel-2, 
23.4.2020 

gravel 0.087 0.078 0.069 0.095 
vegetation 0.114 0.111 0.108 0.108 
water 0.124 0.082 0.074 0.080 
total 0.108 0.090 0.084 0.094 
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4.3.2 Geometric accuracy of the input satellite images 
The geometric quality of images is important information in time series analysis. Poor 
geometric quality and misalignment of images may cause the detection of false 
changes which are not a results of actual changes on the Earth’s surface, but appear 
because of a shift in location. It is therefore crucial to ensure we are always observing 
the same location when monitoring processes with EO data. Sentinel-2 Data Product 
Quality Reports state that the absolute geolocation performance is below 11 m for 
95% of images and the multi-temporal geometric performance is around 12 m (Clerc 
and MPC Team, 2021). This is expected to improve by applying geometric refinement 
with the use of tie points from the Global Reference Image (Clerc and MPC Team, 
2021; Dechoz et al., 2015). The additional refinement step has not yet been deployed 
operationally, but preliminary test show that the absolute geolocation of images will 
be better than 8 m and that multi-temporal co-registration accuracy from different 
orbits will surpass 5 m (Clerc and MPC Team, 2021). However, these values refer to a 
global estimate and not many investigations examine the actual geometric 
performance of the images used. Thus, we conducted several tests to study the 
geometric performance of Sentinel-2 images and investigated if there are any factors 
that have an important influence on the geometric accuracy. 

We conducted the analysis using images processed to Level-1C. Three study areas 
were selected in Kenya, Cyprus, and Slovenia (Figure 14). In each study area, between 
10 and 20 reference points were selected which could be clearly seen and were 
assumed to remain stable during the observation period. Reference points were 
mostly crossroads and were verified using VHR data (Bing, 2021; OpenStreetMap 
contributors, 2021; Surveying and Mapping Authority of the Republic of Slovenia, 
2021e). All Sentinel-2 images of the study areas with at most 10% cloud cover 
acquired between 1 January 2017 and 31 December 2020 were analysed. In total, 395 
images were analysed in Kenya, 444 in Cyprus, and 264 in Slovenia. 

Geometric shifts in images were analysed by registering all images to a selected 
reference image. An image acquired in April 2020 was selected as reference in all 
study areas. The visible spectral bands were combined in a single image which was 
then used in the analyses. The registration of different images was done using 
unnormalised cross-correlation (Guizar-Sicairos et al., 2008) as implemented in the 
Python package scikit-image (version 0.18.3) (van der Walt et al., 2014). The resulting 
shifts in the x- and y-directions were plotted for each study area and the resulting 
average shifts were calculated (Figure 15). 
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Figure 14: Study areas selected for the analyses of the geometric accuracy of Sentinel-2 images. 
Basemap: Bing, 2021. 

The results show that average shifts of Sentinel-2 images are −2.88 m in the x-
direction and −0.02 m in the y-direction. Notably, images acquired by the Sentinel-
2B satellite are shifted more than those acquired by the Sentinel-2A. Average shifts 
on Sentinel-2B images across the different study areas are −4.56 m in the x-direction 
and 0.91 m in the y-direction compared to −0.86 m in the x-direction and −0.46 m in 
the y-direction observed on Sentinel-2A images. Slight differences can be seen 
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between the different study areas, but the overall trends are the same. We found the 
accuracies to be higher than those reported in the literature which range from 
maximum shifts of 6 m (Vajsova and Åstrand, 2015), to 13 m (Pandžić et al., 2016), and 
14 m (Rufin et al., 2021). Importantly, however, existing studies have not 
differentiated between the Sentinel-2 satellites or in cases when they did, the 
reported differences were very small – within 2.5 m (Doshi et al., 2020). Despite the 
shifts that we found, we concluded that they are small and therefore we decided 
against re-aligning the images in subsequent analyses. 

 
Figure 15: Geometric shifts of Sentinel-2 images for the selected study areas. 
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4.3.3 Influence of radiometric corrections on fraction map 
accuracy 

To reduce the effects of atmosphere and topography on reflectance values, 
radiometric corrections are applied to satellite images before the analysis. Various 
pre-processing functions for atmospheric and topographic corrections can be used 
for this purpose. We investigated how these image pre-processing affects the 
accuracy of the SMA. To compare and determine the stability of results, tests were 
performed using two Sentinel-2 images acquired in two different time periods with 
different atmospheric and Sun angle characteristics – the summer image, acquired 
on 11 July 2015, and the autumn image, acquired on 16 October 2017. The dates of 
the images were selected to match the acquisitions of aerial orthophotos which were 
used to generate reference data. We validated the maps based on the area covered 
by each of the land cover classes of interest by comparing the fraction maps to aerial 
orthophotos classified using RF with 2000 samples and 500 trees. The analysis 
involved three different levels of pre-processing of the same image: 

- uncorrected image (top of atmosphere), 
- atmospherically corrected image, and 
- topographically corrected image. 

Each subsequent pre-processing level included corrections from all previous levels. 
Atmospheric corrections were performed by ourselves using the ATCOR programme 
(Richter, 1996; Richter et al., 2006; Richter and Schläpfer, 2019). Topographic 
corrections were applied with the STORM processing chain which combines physical 
models and the Minnaert approach (Pehani et al., 2016; Zakšek et al., 2015). 

The results indicate that atmospheric corrections slightly improved the map 
accuracy compared to the top of atmosphere reflectance image (Figure 16). 
Topographic corrections, on the other hand, introduced additional uncertainty that 
led to an increase in map error even compared to the baseline image. In particular, 
vegetation and gravel were frequently classified as water on the topographically 
corrected image. In subsequent analysis we therefore worked with atmospherically 
corrected images. The omission of topographic correction was not problematic 
because we focused on flat areas in river valleys, whereas topographic error is most 
pronounced on steep slopes. 
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Figure 16: Accuracy of land cover fraction maps based on satellite images with different pre-
processing levels. 

4.3.4 Contribution of improved spatial resolution of input 
satellite images to fraction map accuracy 

The size of the pixel defines the size of area for which the land cover presence 
fractions are given. We investigated whether improved spatial resolution leads to 
more accurate results on an image acquired by the Sentinel-2 system on 11 July 2015. 
Of the ten Sentinel-2 spectral bands used in SMA, six are acquired with a 20 m spatial 
resolution. In the current pre-processing workflow, the remaining four bands with a 
10 m resolution were downsampled to 20 m using bilinear interpolation. The 
resulting land cover fraction maps were thus produced with a 20 m spatial resolution. 

To test the potential contribution of increasing spatial resolution to improve map 
accuracy, we applied the deep learning-based DSen2 algorithm (Lanaras et al., 2018) 
to resample the Sentinel-2 bands with a 20 and 60 m spatial resolution to 10 m. All of 
the 20 m and 60 m spectral bands are included in the resampling, apart from the 
cirrus band (B10) which contains too much noise. 

  



57 

The improvements gained by resampling were assessed by comparing the results 
with two fraction maps based on different input data: 

- four spectral bands originally acquired with a 10 m resolution (blue, green, 
red, infrared) and 

- ten spectral bands with a 20 m resolution. 
- Three endmembers for the SMA were selected automatically. The same land 

cover classes were chosen as endmembers on all images, namely gravel, 
vegetation, and water. With an increase in spatial resolution, the number of 
pixels that needed to be spectrally unmixed increased four-fold and so did 
the time required for the SMA. On the other hand, increasing the number of 
bands included in the SMA did not affect the duration of the SMA (Table 5). 

Table 5: Computing time for automatic selection of three endmembers (ASEM) and the spectral 
mixture analysis (SMA) using different input images, derived from a Sentinel-2 image, acquired on 
11 July 2015. S2 10 m – Sentinel-2 spectral bands acquired with a 10 m spatial resolution; S2 supres 
– Sentinel-2 image resampled to 10 m with the DSen2 algorithm; S2 20 m – Sentinel-2 spectral 
bands acquired with a 20 m spatial resolution, and the spectral bands acquired with a 10 m spatial 
resolution resampled to 20 m with bilinear interpolation. 

image number 
of bands 

number of 
pixels 

ASEM 
(min:s) 

SMA 
(min:s) 

total 
(min:s) 

S2 10 m 4 838,000 00:03 11:06 11:09 
S2 supres 12 838,000 00:07 10:54 11:01 
S2 20 m 10 210,000 00:01 02:35 02:36 

 

Validation of the resulting land cover fraction maps was performed using the pixel-
based method. The reference plot size was adjusted to the map with the coarsest 
spatial resolution, i.e., 20 m × 20 m. Comparison with the results based on the four 
spectral bands originally acquired in a 10 m resolution showed little or no 
improvement in map accuracy (Table 6). Similarly, no improvement in accuracy was 
observed when considering fraction maps based on the 20 m bands. Apparently, 
increasing the spatial resolution of the images with a deep learning algorithm did 
not produce sufficient supplementary information that could lead to a more 
successful spectral analysis. 

The pixel is still the basic unit for which land cover fractions are reported. We 
expected that by considering input satellite images with a higher spatial resolution 
we could improve the thematic accuracy of the produced fraction maps. However, 
the comparison of Landsat- and Sentinel-2-based maps in chapter 3.3.1 and 
Sentinel-2 10 m- and 20 m-based maps in the current chapter make it apparent that 
spectral resolution of input satellite images is more crucial for fraction map accuracy 
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than spatial resolution. Because of the additional disadvantage of the high time 
intensity first for the super-resolution and then for the longer SMA, we decided to 
use the 20 m images in subsequent analysis. 

Table 6: Mean absolute error of land cover fraction maps from different images, derived from a 
Sentinel-2 image, acquired on 11 July 2015. Endmembers selected automatically. 

image baseline-10m baseline-20m super-resolution 
number of bands 4 10 12 
spatial resolution (m) 10 20 10 
gravel 0.140 0.110 0.138 
vegetation 0.166 0.161 0.193 
water 0.262 0.225 0.270 
total 0.189 0.165 0.200 

4.3.5 Using spectral indices to improve fraction map accuracy 
To increase the separability between the different land cover classes of interest, we 
calculated several spectral indices and included them along spectral bands 
reflectance values in the endmember selection process. We tested the contribution 
of the following spectral indices (Table 7): 

- Anthocyanin Reflectance Index 1 (ARI1), 
- Burn Area Index (BAI), 
- Band Ration for Built-up Areas (BRBA), 
- Enhanced Vegetation Index (EVI), 
- Modified Normalised Difference Water Index (MNDWI), 
- Modified Soil Adjusted Vegetation Index 2 (MSAVI2), 
- Normalised Difference Infrared Index (NDII), 
- Normalised Difference Vegetation Index (NDVI), 
- NDVI multiplied by green band (NDVI-GREEN), 
- Normalised Difference Water Index (NDWI), 
- Normalised Pigment Chlorophyll Ratio Index (NPCRI), and 
- Plant Senescence Reflectance Index (PSRI). 

The potential contribution of each index to improved land cover separability was first 
assessed by visual comparison with reference data. We used Sentinel-2 images to test 
the contribution of spectral indices to SMA accuracy. Images from 2015, 2017, and 
2020 were used, in line with the availability of reference data. For brevity, only the 
results based on the image acquired on 23 April 2020 and validated with field 
mapping data are shown. 
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Table 7: Spectral indices selected to improve the separability of land cover classes. 

name formula reference 

Anthocyanin Reflectance Index 1 
(ARI1) 

𝐴𝑅𝐼1 ൌ  
ଵ

ீோாாே
െ

ଵ

ோா஽ ா஽ீா
  Gitelson et al., 2009 

Burn Area Index (BAI) 𝐵𝐴𝐼 ൌ
ଵ

ሺ଴.ଵିோா஽ሻమାሺ଴.଴଺ିேூோሻమ
  Martín, 1998 cited in 

Chuvieco et al., 2002 

Band Ratio for Built-up Areas 
(BRBA) 

𝐵𝑅𝐵𝐴 ൌ
𝑅𝐸𝐷
𝑆𝑊𝐼𝑅  Waqar et al., 2012 

Enhanced Vegetation Index (EVI) 𝐸𝑉𝐼 ൌ 2.5 ∗
𝑁𝐼𝑅െ𝑅𝐸𝐷

𝑁𝐼𝑅൅6𝑅𝐸𝐷െ7.5𝐵𝐿𝑈𝐸൅1  Huete et al., 1999, 
1997 

Modified Normalised Difference 
Water Index (MNDWI) 

𝑀𝑁𝐷𝑊𝐼 ൌ  𝐺𝑅𝐸𝐸𝑁െ𝑆𝑊𝐼𝑅
𝐺𝑅𝐸𝐸𝑁൅𝑆𝑊𝐼𝑅  Du et al., 2016 

Modified Soil Adjusted 
Vegetation Index (MSAVI2) 

𝑀𝑆𝐴𝑉𝐼2 ൌ

 2𝑆𝑊𝐼𝑅൅1െ ටሺ2𝑆𝑊𝐼𝑅൅1ሻ2െ8ሺ𝑆𝑊𝐼𝑅െ𝑁𝐼𝑅ሻ
2   

Qi et al., 1994 

Normalised Difference Infrared 
Index (NDII) 

𝑁𝐷𝐼𝐼 ൌ
𝑁𝐼𝑅െ𝑆𝑊𝐼𝑅
𝑁𝐼𝑅൅𝑆𝑊𝐼𝑅  Gao, 1996 

Normalised Difference 
Vegetation Index (NDVI) 

𝑁𝐷𝑉𝐼 ൌ
𝑁𝐼𝑅െ𝑅𝐸𝐷
𝑁𝐼𝑅൅𝑅𝐸𝐷  Tucker, 1979 

NDVI multiplied by green band 
(NDVI-GREEN) 

𝑁𝐷𝑉𝐼𝐺𝑅𝐸𝐸𝑁 ൌ ቀ
𝑁𝐼𝑅െ𝑅𝐸𝐷
𝑁𝐼𝑅൅𝑅𝐸𝐷ቁ ∗ 𝐺𝑅𝐸𝐸𝑁  Švab Lenarčič, 2018 

Normalised Difference Water 
Index (NDWI) 

𝑁𝐷𝑊𝐼 ൌ  
𝐺𝑅𝐸𝐸𝑁െ𝑁𝐼𝑅
𝐺𝑅𝐸𝐸𝑁൅𝑁𝐼𝑅  McFeeters, 1996 

Normalised Pigment Chlorophyll 
Ratio Index (NPCRI) 

𝑁𝑃𝐶𝑅𝐼 ൌ
𝑅𝐸𝐷െ𝐵𝐿𝑈𝐸
𝑅𝐸𝐷൅𝐵𝐿𝑈𝐸  Peñuelas et al., 

1993, 1994 

Plant Senescence Reflectance 
Index (PSRI) 

𝑃𝑆𝑅𝐼 ൌ
𝑅𝐸𝐷െ𝐵𝐿𝑈𝐸
𝑅𝐸𝐷 𝐸𝐷𝐺𝐸   Merzlyak et al., 1999 

 

Following these preliminary tests, a subset of spectral indices was chosen for further 
analysis. This subset of indices consisted of EVI, MNDWI, MSAVI2, NDII, NDVI, NDVI-
GREEN, NDWI, and NPCRI. The final selection was made from indices which led to an 
increase in fraction map accuracy (Table 8). 
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Table 8: Improvement of the spectral mixture analysis by using spectral indices. Mean absolute 
error of fraction maps based on different input data derived from a Sentinel-2 image, acquired on 
23 April 2020. Endmembers selected automatically. 

image baseline all indices selected indices 
number of indices 0 8 5 
gravel 0.062 0.058 0.056 
vegetation 0.182 0.124 0.120 
water 0.198 0.125 0.124 
total 0.144 0.102 0.100 

 

 
Figure 17: Values of the selected set of indices for the land cover classes of interest. Connecting lines 
are added for easier identification of values referring to the same land cover class. 

We also selected indices with values which showed high separability between the 
land cover classes of interest (Figure 17). The presented endmembers were selected 
automatically. Two vegetation endmembers were selected before water and gravel 
were selected. Evidently, three endmembers were not sufficient to describe all of the 
land cover classes of interest. In further analysis, the fraction maps based on the two 
vegetation endmembers were added in subsequent analysis to result in a single 
vegetation fraction map. Index values for the different land cover classes of interest 
are similar to those in existing literature (Wu, 2004; Afrasinei et al., 2018). In particular, 
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gravel bars have similar spectral index values to built-up areas (Xi et al., 2019). The 
selected spectral indices, which were thus chosen to complement the reflectance of 
the spectral bands, are EVI, MSAVI2, NDVI, NDWI, and MNDWI. 

4.3.6 Conclusions on input satellite images 
Tests regarding the input satellite images for a successful SMA to map fluvial gravel 
bars led to four important findings for further analysis: 

- Both Sentinel-2 and Landsat 8 images can be successfully used to produce 
accurate land cover fraction maps. Maps based on Landsat 7 have slightly 
lower accuracy, but still sufficient to provide meaningful information. 

- Atmospheric correction improves the accuracy of fraction maps. 
Topographic correction introduces additional uncertainties and is therefore 
not recommended. 

- For Sentinel-2, increasing the spatial and spectral resolution of input images 
to 10 m and 12 spectral bands using a deep neural network does not 
improve the accuracy of fraction maps compared to the baseline images 
with a 20 m spatial resolution and 10 spectral bands. 

- The inclusion of spectral indices as input data for the SMA in addition to the 
spectral band information improves fraction map accuracies. The selected 
indices which lead to the highest separability between the land cover 
classes of interest and the most accurate fraction maps are EVI, MSAVI2, 
NDVI, NDWI, and MNDWI. 

The next chapter explores the different methods and settings for endmember 
selection. 

4.4 Endmember selection 
Endmembers are crucial for a successful SMA. We explored the impacts of different 
endmember selection strategies, namely a manual or automatic method, various 
numbers of selected endmembers, and diverse numbers of land cover classes for the 
endmembers to represent. Finally, we assessed the transferability of endmembers, 
i.e., the possibility of selecting endmembers on one image and using the same 
endmembers for the SMA of another image (Figure 18). 
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Figure 18: The endmember selection method. 

4.4.1 Manual or automatic endmember selection 
The manual endmember selection method is based on the use of reference data with 
a higher spatial resolution than the analysed satellite images to choose pure pixels 
where only a single land cover class is present. Several different pure pixels can be 
selected for one land cover class. Their spectral signatures and index values are 
combined by taking the average value, thus obtaining manual endmembers. 

In the testing phase, we wanted to use the most representative and the best 
possible endmembers. At the same time, the method had to be comparable across 
different input satellite images. Therefore, we started with manual endmember 
selection on Landsat images, which have a lower spatial resolution and thus a lower 
probability of having pure pixels containing a single land cover class. For the 
endmember calculation, we selected all available spectrally pure pixels. This 
amounted to four pixels for gravel, twenty for vegetation, and nine for water. The 
same number of pixels was chosen for manual selection of endmembers on 
Sentinel-2 images. To increase comparability between the two different remote 
sensing systems, we selected endmembers at the same locations in each case. 

Automatic endmember selection was done with an implementation of the N-
FINDR algorithm in the Python package pysptools (version 0.15.0) (Therien, 2018). We 
started by defining three different endmembers. If the selected endmembers did not 
represent the three land cover classes of interest, we increased the number of 
endmembers until all desired land cover classes were represented with at least one 
endmember. 

The two different endmember selection methods were compared on four satellite 
images: two Sentinel-2, one Landsat 7, and one Landsat 8. The results indicate that 
manually selected endmembers lead to more accurate land cover fraction maps 
(Table 9). Nevertheless, the accuracy achieved by using automatically selected 



63 

endmembers is within 0.05 of that achieved by manually selected endmembers. 
Importantly, gravel is mapped very successfully with both manually and 
automatically selected endmembers with little or no difference between the two 
selection methods. 

Table 9: Pixel-wise mean absolute error per land cover class for different images analysed using 
different endmember selection methods. Best results per land cover class in bold. 

land cover class Landsat 7, 9.7.2015 Sentinel-2, 11.7.2015 
manual automatic manual automatic 

gravel 0.087 0.094 0.078 0.082 
vegetation 0.114 0.140 0.111 0.139 
water 0.124 0.141 0.082 0.097 
total 0.108 0.125 0.090 0.106 
     
land cover class Landsat 8, 25.4.2020 Sentinel-2, 23.4.2020 

manual automatic manual automatic 
gravel 0.069 0.071 0.095 0.124 
vegetation 0.108 0.124 0.108 0.157 
water 0.074 0.097 0.080 0.098 
total 0.084 0.097 0.094 0.126 

 

When observing the errors at pixel level, it is clear that on a single pixel, the same 
land cover classes are frequently problematic for both the manually and the 
automatically selected pixels. Likewise, the direction and magnitude of the error are 
often very similar across endmember selection methods. Regarding the confusion of 
land cover classes, common misclassifications include the labelling of shallow water 
as gravel. This is not possible to overcome and has important implications, as the 
Soča is rarely over 2 m deep. The shallow depth means that electromagnetic 
radiation reaches the gravel riverbed, leading to reflectance values similar to surface 
gravel. Overall, gravel is mostly over-estimated, vegetation is under-estimated, while 
results for the water class are mixed. 

The cumulative distribution functions have similar shapes regardless of the 
method used to select endmembers and the input satellite image (Figure 19). 
Nevertheless, the errors for manual endmember selection are generally closer to 0 
than the errors for automatic endmember selection. Vegetation is the most 
problematic land cover class with the largest errors. The vegetation fraction is under-
estimated in most cases. Water is generally well detected, with error values very close 
to 0, except on the Landsat 7 image. The Sentinel-2 image, acquired in 2020 and 
analysed with automatically selected endmembers, has the largest error, especially 
for vegetation and gravel. 
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Figure 19: Cumulative distribution functions of pixel-wise errors per land cover class for different 
analysed images and different endmember selection methods. 

This is also evident when comparing the average errors of the fraction maps (Tables 
10 and 11). The errors for gravel are the lowest, except for the Sentinel-2 image 
acquired in 2020. The standard deviation of the errors is comparable for all land cover 
classes considered. However, in all analysed images, the standard deviation of errors 
is the lowest for gravel, which is important and beneficial for our study. 
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Table 10: Pixel-wise mean error with standard deviation per land cover class for different analysed 
images acquired in 2015 using different endmember selection methods. 

land cover class Landsat 7, 9.7.2015 Sentinel-2, 11.7.2015 
manual automatic manual automatic 

gravel −0.018 ± 0.140 0.002 ± 0.134 0.013 ± 0.127 0.006 ± 0.132 
vegetation 0.016 ± 0.165 −0.042 ± 0.177 0.001 ± 0.174 0.000 ± 0.189 
water 0.002 ± 0.182 0.040 ± 0.181 −0.015 ± 0.159 −0.006 ± 0.163 

 

Table 11: Pixel-wise mean error with standard deviation per land cover class for different analysed 
images acquired in 2020 using different endmember selection methods. 

land cover class Landsat 8, 25.4.2020 Sentinel-2, 23.4.2020 
manual automatic manual automatic 

gravel 0.005 ± 0.109 0.003 ± 0.134 0.062 ± 0.128 0.100 ± 0.113 
vegetation 0.022 ± 0.172 0.061 ± 0.177 −0.038 ± 0.150 −0.070 ± 0.174 
water −0.026 ± 0.149 −0.064 ± 0.181 −0.026 ± 0.133 −0.033 ± 0.153 

4.4.2 Different numbers of selected endmembers 
Automatic endmember selection may not result in the desired number of land cover 
classes when selecting the exact number of endmembers equal to the number of 
land cover classes of interest. In such cases, we increased the number of selected 
endmembers until all desired land cover classes were represented. We investigated 
whether increasing the number of endmembers leads to more accurate results 
covering the full land cover diversity, or whether endmembers tend to cluster around 
certain values. Such clustering would indicate that very similar endmembers are 
being selected.  

The chosen algorithm for automatic endmember selection is implemented to 
allow the calculation of a maximum of 17 different endmembers. We started with the 
selection of three endmembers and increased this in steps of two up to 17. We looked 
for a possible clustering with plots of endmember values in selected spectral bands 
and indices (Figures 20 and 21). 

A visual inspection of the plots of endmember values shows that clustering starts 
at five automatically selected endmembers. As the number of endmembers is 
increased, the newly selected values are somewhere between the extreme values 
already selected with a set of five or even three endmembers. 
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Figure 20: Values for all spectral bands and indices considered for different numbers of 
automatically selected endmembers. The dashed horizontal line shows the average value for all 
automatically selected endmembers. The solid horizontal line shows the values for manually 
selected endmembers. 
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Figure 21: Values for selected spectral bands reflectance and indices for different numbers of 
automatically selected endmembers. The displayed bands and indices show the highest 
separability between the different land cover classes. The dashed horizontal line shows the average 
value of all automatically selected endmembers. The solid horizontal line shows the values for 
manually selected endmembers. 

4.4.3 Considering shade as a separate endmember 
Shade is a frequently selected endmember in SMA studies (e.g., Adams, 1995; 
Dennison and Roberts, 2003; Amaral et al., 2015). The reflectance of shaded pixels 
can be similar to that of surface water, so the inclusion of a shade endmember has 
been shown to be particularly important when mapping water (Liu et al., 2020). Areas 
detected as shade would then be masked out from the analysis. We therefore 
conducted a series of tests with shade as an additional endmember. Sentinel-2 
satellite images were used for the analysis. Two time periods were considered, early 
summer 2015 and mid-autumn 2017. The selected time periods were primarily 
related to the availability of reference data, but also allowed comparison of the 
effects of different Sun angles and the consequent presence of shade. The resulting 
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fraction maps were validated using the area-based approach by comparing the 
presence of each land cover class on the fraction map to that on the reference data 
(Figure 22). 

 
Figure 22: Absolute difference in the presence of land cover classes between the reference data and 
the satellite image-based land cover fraction map with shade as a separate endmember. 

The results indicate that the inclusion of shade as an additional endmember does not 
lead to more accurate fraction maps. Evidently, shade is a difficult class to map, as its 
detection accuracy is frequently the lowest of the classes considered. In both fraction 
maps examined, the presence of shade is over-estimated. This is interesting because 
one of the reference images was acquired earlier in the day and the other later in the 
day than the analysed satellite images (Table 12). The over-estimation of shade is 
apparently larger than the variability of shade presence due to the different Sun 
angles. 

Table 12: Acquisition times for the remote sensing data considered in the shade analysis. Data 
source: ESA, 2021; Surveying and Mapping Authority of the Republic of Slovenia, 2021e. 

image ID use image system acquisition date acquisition time (UTC) 
1 input Sentinel-2 11. 07. 2015 10:00 
2 reference orthophoto 26. 05. 2015 07:29 
3 input Sentinel-2 16. 10. 2017 10:16 
4 reference orthophoto 14. 10. 2017 11:51 

 

In addition to considering shade as a separate land cover class, we explored the 
impact of taking it into account as part of the training samples for other land cover 
classes. We included shade in the training samples for classifying the reference data 
to better represent the true spectral composition of the land cover class. The already 
acquired training samples for shade were reclassified to other land cover classes of 
interest, or discarded if they contained mixed land cover. Baseline reference data 
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were produced from the remaining land cover classes only, excluding all shade 
training samples. Results were validated using the area-based method (Figure 23). 

 
Figure 23: Absolute difference in the presence of land cover classes between the reference data and 
the satellite image-based land cover fraction map. For the reference data, shade is included in the 
training samples for other land cover classes (left) or completely excluded from the training 
samples (right). 

The fraction maps that do not include shade as a separate endmember are more 
accurate than those that do. The best results are obtained when shade is completely 
excluded from the training samples for the reference data. Rather than providing a 
better representation of the land cover class of interest, shade appears to introduce 
additional variability that leads to confusion between classes and consequently 
lower map accuracy. When selecting training samples for reference data, it is 
therefore advisable to select only pixels that do not contain shade. In our case, the 
selection was manual so it was easily possible to exclude shade by visual 
interpretation. If applying an automatic training sample selection method, potential 
areas of shade can be masked out in advance, for example using a digital elevation 
model for terrain shadow and a buffer around forested areas for vegetation shade. 
Despite excluding shade from training samples, subsequent analysis classifies land 
cover classes with a satisfactory accuracy, even if they are covered with shade.  
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4.4.4 Transferability of endmembers selected on one image for 
the analysis of different images 

We explored the possibility of applying a set of endmembers selected on one satellite 
image for the SMA of another image acquired with the same remote sensing system. 
In choosing the satellite images to be considered, we followed the availability of 
reference data, both for the selection of endmembers and for the validation of 
fraction maps. Thus, for testing the Sentinel-2 images we used endmembers selected 
on an image from 23 April 2020 to unmix an image from 11 July 2015 (Table 13). 

Table 13: Class-wise mean absolute error with endmembers (EM) chosen on the same or a different 
image, for images acquired with Sentinel-2. Values are deviations from averages. M – manual EM 
selection method; A – automatic EM selection method. Best results per land cover class in bold. 
acquisition date of 
analysed image 

av
er

ag
e 

11. 07. 2015 11. 07. 2015 23. 04. 2020 23. 04. 2020 

acquisition date of 
EM selection image 11. 07. 2015 23. 04. 2020 11. 07. 2015 23. 04. 2020 

EM selection method M A M A M A M A 
gravel 0.093 −0.015 −0.011 −0.013 0.011 −0.009 0.005 0.002 0.030 
vegetation 0.136 −0.025 0.004 −0.037 −0.010 0.024 0.052 −0.028 0.021 
water 0.093 −0.011 0.004 −0.014 −0.011 0.023 0.019 −0.014 0.005 
total 0.108 −0.017 −0.001 −0.021 −0.003 0.013 0.025 −0.013 0.019 

 

We also considered the Landsat 8 system, where endmembers selected on an image 
from 25 April 2020 were taken for the SMA of an image from 17 July 2015 (Table 14). 
Endmembers were selected using both the manual and automatic methods. The 
same number of endmembers was considered for both selection methods. For 
Sentinel-2, we selected one endmember for gravel, two for vegetation, and two for 
water; for Landsat 8, there was one endmember for gravel, three for vegetation, and 
two for water. 

The results indicate that the SMA can achieve high accuracy with transferred 
endmembers. Transferred endmembers can even lead to better results than those 
selected on the analysed image. The transfer of endmember is successful for all land 
cover classes considered. Mapping accuracy changes the least for gravel endmember 
transfer. Transfer of water endmembers is the most uncertain and results in the 
largest differences in mapping accuracy. Both manually and automatically selected 
endmembers can be successfully transferred. Differences in accuracies due to the 
transfer of endmembers are smaller when using manually selected endmembers. 
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Table 14: Class-wise mean absolute error with endmembers (EM) chosen on the same or a different 
image, for images acquired with Landsat 8. M – manual EM selection method; A – automatic EM 
selection method. Best results per land cover class in bold. 
acquisition date of 
analysed image 

av
er

ag
e 

17. 07. 2015 17. 07. 2015 25. 04. 2020 25. 04. 2020 

acquisition date of 
EM selection image 17. 07. 2015 25. 04. 2020 17. 07. 2015 25. 04. 2020 

EM selection method M A M A M A M A 
gravel 0.096 −0.022 0.019 −0.017 −0.001 −0.027 0.100 −0.027 −0.025 
vegetation 0.132 −0.035 0.101 −0.049 −0.012 −0.009 0.035 −0.024 −0.008 
water 0.101 −0.016 0.071 −0.021 0.015 −0.022 0.004 −0.026 −0.004 
total 0.109 −0.024 0.063 −0.029 0.001 −0.019 0.046 −0.026 −0.012 

4.4.5 Conclusions on endmember selection 
In this chapter, several features related to the selection of endmembers for SMA were 
explored and the following observations were made: 

- Automatically selected endmembers can be used to produce fraction maps 
with similar accuracy as manually selected endmembers. However, it is 
necessary to inspect the automatically selected endmembers because 
various spectral and land cover outliers can inherently be selected as 
endmembers. 

- The optimal total number of endmembers for SMA using multispectral 
images is between three and five. Fraction maps based on endmembers 
representing the same land cover class can be combined after the SMA. 
Increasing the number of automatically selected endmembers to more than 
five leads to many different endmembers being considered for a single land 
cover class of interest, and thus to redundant information. 

- The developed method does not allow accurate detection of shade. On the 
other hand, the inclusion of shade pixels in other land cover classes does not 
seem to affect the accuracy of the fraction maps. 

- In the study area during the leaf-on season, the endmembers selected on 
one satellite image can be successfully used for the SMA of another satellite 
image acquired with the same remote sensing system. 

Having established the endmember selection process, the next section presents the 
resulting land cover fraction maps and compares their accuracy to the accuracy of 
land cover maps produced using a hard classification method. 
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4.5 Soft image classification 
In this section, the fraction maps produced using SMA are presented. The maps for 
different remote sensing systems are shown and compared with a hard classification 
method using the spectral angle mapper (SAM) (Kruse et al., 1993). 

 
Figure 24: Soft image classification. 

4.5.1 Land cover fraction maps 
Using the SMA-based mapping method, we produced land cover fraction maps for 
the three classes of interest – gravel, vegetation, and water. The maps were 
generated using Sentinel-2, Landsat 7, and Landsat 8 satellite images. Upon visual 
inspection, the maps look informative, with gravel occurring in rounded, elongated 
shapes, resembling gravel bars. Different types of gravel bars can be distinguished, 
including those forming in the middle of the river and those developing along the 
river bank. Vegetation is detected in the riparian zone along the river banks. Water 
surfaces are linear and connected. Comparing the 2015 and 2020 maps, changes in 
the size and location of gravel bars are evident. The dynamics of gravel bars confirm 
findings from the literature that one type of gravel bar can be transformed into 
another over time (Robert, 2003). Fraction maps produced with manually and 
automatically selected endmembers show no visible differences (Figure 25). 

4.5.2 Comparison of results with hard classification 
To additionally assess the proposed soft classification mapping method, we 
compared it with a hard classification method. We selected the spectral angle 
mapper (SAM) classification (Kruse et al., 1993) based on the existing literature and 
because similar input data can be used, making the two methods easy to compare 
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(Dennison et al., 2004). The endmember spectral signatures from SMA were used as 
input spectra for SAM. We compared the two classification methods based on 
accuracy assessment with reference to VHR data and by comparing their respective 
error metrics. For SMA, we observed the root-mean-square error (RMSE), which is a 
commonly used metric to describe the error of the unmixed signal (Dubovyk et al., 
2015; Somers et al., 2011). 

 
Figure 25: Land cover fraction maps for a section of the study area on the Soča River. a) Observed 
river section on a true colour orthophoto. Data source: Surveying and Mapping Authority of the 
Republic of Slovenia, 2021e. b) – c) Resulting fraction maps. Maps produced with manually selected 
endmembers shown at the top and maps produced with automatically selected endmembers 
shown at the bottom. 

For each pixel, the predicted reflectance values are calculated based on the land 
cover class fraction determined by the SMA. The RMSE is then computed as the mean 
difference between the modelled and observed reflectance. For SAM, we reported 
the spectral angle between the reflectance values of a single pixel and the reflectance 
values of the endmember representing the land cover class as which that pixel was 
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classified. Thus, a large spectral angle signifies that the spectral signature of the pixel 
is very different from the spectral signature of the endmember representing the land 
cover class to which the particular pixel was assigned.  To compare SMA and SAM, 
the two respective error values were extracted for 1000 randomly selected pixels. 
Additionally, accuracy was evaluated both pixel-wise and study area-wise. The pixel-
wise assessment was performed for 50 randomly selected map pixels by comparing 
their land cover with that obtained based on VHR reference images. In this case, we 
expected the soft classification to perform better, as it is able to detect sub-pixel land 
cover presence fractions. We also assessed the mapping accuracy for the whole study 
area by looking at the detected land cover presence for each class of interest and 
comparing it to the reference data. 

We present the comparison of error metrics for images acquired in 2020 (Figure 
26). The Sentinel-2 and Landsat 8 were compared based on models that use 
automatically selected endmembers. The two different endmember selection 
methods – manual and automatic – were assessed using Sentinel-2 images. The 
results show that the error metrics of the two classification methods are not strongly 
linearly correlated. The highest R2 value (0.352) was obtained for vegetation on the 
Landsat 8 image. This indicates that, for example, a pixel that was accurately classified 
by the soft classification was not necessarily classified equally well by the hard 
classification. For the Landsat 8 image, water pixels were classified well by SMA, but 
not by SAM. Both soft and hard classification produced the most accurate models for 
gravel, while water proved the most difficult to classify. Gravel has a uniform spectral 
response that can be modelled well even with few samples. Water appears to have a 
highly variable spectral response which is difficult to model accurately. One of the 
possible reasons for this variability is the non-uniform depth of water, which ranges 
from a few centimetres to several metres, leading to the occasional inclusion of the 
riverbed in the spectral signal. Additionally, the presence of rapids in the river causes 
whitewater, which has a different spectral response than the less turbulent sections 
of the river. Regarding the endmember selection methods, manually selected 
endmembers lead to smaller spectral angles, but a higher RMSE than automatically 
selected endmembers. One explanation for this lies in the inherent characteristics of 
the two endmember selection methods. The automatic method searches for 
endmembers with the extreme spectral properties and, consequently, the largest 
spectral angle relative to the spectral responses of other pixels. The manual method, 
on the other hand, uses endmembers that are the average spectra, more similar to a 
wider range of other pixels and result in smaller spectral angles. However, the 
manually selected endmembers cannot account for the full range of spectral 
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variability in the image, which leads to a high RMSE. For gravel, a low RMSE and small 
spectral angles were achieved for the models for both Landsat 8 and Sentinel-2. The 
hard classification of vegetation was slightly better with Landsat 8, possibly due to 
the larger number of spectral bands in the red edge range. Water was modelled with 
very large spectral angles for Sentinel-2 and even larger ones for Landsat 8, again 
most likely due to the high spectral variability of water surfaces. 

 
Figure 26: Comparison of RMSE and spectral angle for different land cover classes, remote sensing 
systems, and endmember selection methods. Values are for land cover maps based on images from 
23 April 2020 (Sentinel-2) and 25 April 2020 (Landsat 8). 
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Table 15: Mean absolute error for a pixel-wise comparison of soft and hard classification per land 
cover class. The Sentinel-2 image was acquired on 23 April 2020. The Landsat 8 image was acquired 
on 25 April 2020. EM – endmember. Best results per land cover class in bold. 

image Sentinel-2 Landsat 8 
EM selection manual automatic automatic 
classification soft hard soft hard soft hard 
gravel 0.095 0.254 0.124 0.273 0.071 0.249 
vegetation 0.108 0.131 0.157 0.131 0.124 0.193 
water 0.080 0.159 0.098 0.180 0.097 0.213 
total 0.094 0.181 0.126 0.195 0.097 0.218 

Table 16: Comparison of soft and hard classification accuracy based on land cover class presence 
in the validation area. Values indicate the difference to reference land cover class presence. The 
Sentinel-2 image was acquired on 23 April 2020. The Landsat 8 image was acquired on 25 April 
2020. EM – endmember. Best results per land cover class in bold. 

image Sentinel-2 Landsat 8 
EM selection manual automatic automatic 
classification soft hard soft hard soft hard 
gravel 0.062 0.190 0.100 0.210 0.003 0.163 
vegetation −0.038 −0.045 −0.070 −0.045 0.061 0.042 
water −0.026 −0.147 −0.033 −0.167 −0.064 −0.205 

 

The comparison with the hard classification was also made based on the accuracy of 
the representation of the actual land cover. For brevity, only results based on images 
acquired in 2020 are shown. In situ data from field mapping were used as reference. 
First, we assessed the pixel-wise accuracy using MAE (Table 15). As expected, the soft 
classification performed much better, because the hard classification is not able to 
convey information about land cover at the sub-pixel level. 

Next, we examined the values for validating the area-wise presence of land cover 
classes (Table 16). The soft classification performed much better in modelling the 
presence of gravel and water. No important difference was found between the two 
classification methods for vegetation. 

4.5.3 Conclusions on image classification 
The tests described in the previous chapters can be successfully used to produce land 
cover fraction maps. Both pixel-wise and study-area wise validation showed that 
such land cover maps derived from the so-called soft classification are more accurate 
than maps produced using hard classification methods. The proposed method can 
therefore be used for the development of a land cover time series and subsequent 
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monitoring of gravel bars. The construction of a land cover time series is presented 
in the next section. 

4.6 Land cover time series development 
In order to track the changes in land cover, we analysed all of the available Sentinel-
2 images for the study area that had less than 10% cloud cover on the whole image. 
For clarity, the results of the different endmember selection and data smoothing 
methods are presented based only on data for the time period from the years 2019 
and 2020 (Figure 27). 

 
Figure 27: Land cover time series development. 

4.6.1 Endmember selection for time series analysis 
We started with one endmember selected automatically for gravel, one for water, 
and two for vegetation. The two fraction maps based on the two vegetation 
endmembers were combined after the SMA to obtain a single fraction map of 
vegetation presence. 

Three approaches were applied to determine the endmembers used for the SMA: 

- Same endmembers for all images: the endmembers selected on the image 
from 11 July 2015 were used to unmix all images in the time series. 

- Unique endmembers for every image: endmembers were selected 
separately for each image, but always at the same location. The selected 
locations were visually inspected to ensure that the desired land cover was 
actually present. 
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- Unique vegetation endmembers: only vegetation endmembers were 
selected separately for each image. The gravel and water endmembers were 
transferred from the image acquired on 11 July 2015. 

 
Figure 28: Pixels selected for unmixing on the first and last Sentinel-2 image of the time series used 
and on the aerial orthophoto, acquired on 26 June 2015 (basemap: ESA, 2021; Surveying and 
Mapping Authority of the Republic of Slovenia, 2021e). 

Land cover class and pixel purity were verified using satellite images and reference 
aerial orthophotos (Figure 28). The endmembers were selected automatically using 
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the N-FINDR algorithm as described in Chapter 4.4.1 above. They therefore represent 
pixels with the most diverse spectral characteristics. In future studies, if the selection 
is done manually, in the case of water endmembers, a pixel closer to the centre of the 
river flow could be selected. In this way, it would be easier to ensure that water is 
indeed present on the selected pixel in different hydrological conditions. 

The location of the pixel for which the endmember values were extracted 
remained the same for all different endmember selection methods. However, the 
endmember values changed in accordance with the image reflectance values. For 
the uniquely selected endmembers, the fluctuations of their values over the year 
were evident (Figure 29). 

 
Figure 29: Time series of Sentinel-2 NDVI for the different selected endmembers. 

A visual comparison of the time series for the land cover classes of interest shows 
similar general trends and plot shapes, but also considerable differences in 
magnitude (Figure 30). The time series based on the same endmembers transferred 
to all images analysed appears to be the most stable. 

The high presence of water in the winter months is not only due to the rise in 
water level, but also due to topographic shadow classified as surface water (Figure 
31). Topographic shadow is therefore a cause for error. However, as described in 
chapter 4.4.3 above, this problem cannot be solved with the available topographic 
corrections. Moreover, the accuracy of shade detection with the proposed method is 
much lower than the accuracy for other land cover classes of interest. Further shade 
detection and elimination is beyond the scope of this work. 
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Figure 30: Time series of presence of different land cover classes in the study area based on three 
different endmember selection strategies. 

 
Figure 31: Time series of water presence, based on transferred endmembers, and water level 
measured at a gauging station in Kobarid. Data source: Slovenian Environment Agency, 2021b. 
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4.6.2 Smoothing vegetation endmembers for time series 
analysis 

A large variability in the presence of land cover classes is observed in the time series 
plots (Figure 30), particularly for vegetation. One possible reason for this could be the 
continuous change in spectral characteristics of vegetation due to phenology, and 
thus a difficulty in accurately identifying the vegetation land cover class on all 
images. 

 
Figure 32: Time series for the different selected endmembers in the Sentinel-2 band 8A. Vegetation 
endmember values smoothed using a Savitzky-Golay filter. Vegetation endmember values 
averaged for each month shown with a dashed line. Unsmoothed vegetation endmember values 
shown in the background in lighter colours. 
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We therefore performed additional tests using two approaches of averaging 
vegetation endmembers to make them more general and appropriate for analysing 
different images (Figure 32): 

- The first method locally smooths the time series of vegetation endmember 
reflectance and index values with a Savitzky-Golay filter and uses the 
smoothed values for unmixing. We used a Savitzky-Golay filter 
implementation from the R package Signal (Signal developers, 2013). 

- The second method calculates monthly averages of vegetation endmember 
values and then uses these averages to unmix all images acquired in that 
month. 

Plots of the time series data for selected land cover presence show no considerable 
difference between the different smoothing strategies for the vegetation 
endmembers (Figure 33). Since smoothing represents an additional processing step 
and lengthens the analysis process, we decided to omit it in further work. 

 

Figure 33: Time series of the presence of the selected land cover class based on different methods 
for smoothing the vegetation endmembers. 
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4.6.3 Land cover time series smoothing 
To better detect long-term changes in gravel bars, we attempted to remove outliers 
with smoothing. We used the Savitzky-Golay filter, which is implemented in the R 
package Signal (Signal developers, 2013). The contribution of smoothing was 
considerable, as significant changes and important trends were much easier to 
detect with visual inspection (Figure 34). 

 
Figure 34: Time series of different land cover classes presence smoothed with a Savitzky-Golay filter. 
Unsmoothed values shown in the background in lighter colours. 

4.6.4 Conclusions on land cover time series 
Based on a time series of cloudless Sentinel-2 images acquired in the years 2019 and 
2020, we made several observations regarding the development of land cover time 
series from fraction maps: 

- The spectral signatures of endmembers selected on one satellite image can 
be used to successfully unmix a time series of different satellite images 
acquired in various seasons. 

- When acquired separately for each satellite image, vegetation endmembers 
show the largest variations. However, temporally smoothing or averaging 
the spectral signatures of the vegetation endmembers does not lead to 
better fraction maps or more stable land cover time series. 

- Smoothing the land cover time series using a Savitzky-Golay filter results in 
a more stable dataset where meaningful disruptions can be more easily 
identified. 
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4.7 Conclusions on the proposed method 
We tested various settings to determine the optimal characteristics of a spectral 
mixture analysis (SMA)-based method for mapping and monitoring gravel bars. The 
method was developed and tested on a 15 km section of the Soča River in Slovenia, 
between the settlements of Kobarid and Tolmin. The different options were validated 
using either a pixel-wise or a study area-wise accuracy assessment, as both were 
shown to give similar results when comparing different settings. 

Regarding the input satellite images, we found that both Sentinel-2 and Landsat 8 
images can be used to accurately map land cover fractions. Landsat 7 images result 
in slightly less accurate results, but the difference is within 0.02 MAE and thus still 
acceptable. The atmospheric correction improves the mapping accuracy, but the 
topographic correction introduces additional uncertainty and does not contribute to 
map improvement. Additionally, increasing the spatial and spectral resolution using 
a deep neural network, as tested for Sentinel-2 images, does not lead to more 
accurate fraction maps. On the other hand, including selected spectral indices in 
addition to spectral bands leads to more accurate results. 

The endmember selection is one of the most important steps in SMA; we 
therefore tested different configurations. The results show that both manual and 
automatic endmember selection can produce accurate fraction maps. Nevertheless, 
even the automatic method requires manual inspection of the selected endmembers 
to ensure that all of the land cover classes of interest are included. To cover the three 
land cover types of interest, the optimal number of endmembers is between three 
and five. Based on the existing literature, shade is an additional endmember that can 
lead to better fraction maps. However, we found that shade is difficult to detect with 
the proposed method. Moreover, including shade in other land cover classes of 
interest does not significantly reduce map accuracy. Therefore, we did not consider 
shade as a separate endmember. Finally, we found that the endmembers selected 
based on one satellite image can be successfully transferred to another satellite 
image to perform SMA. 

The land cover fraction maps produced using SMA look informative and show the 
land cover classes of interest well. Compared to a hard classification based on 
spectral angle mapper, the fraction maps are more accurate, which is another 
incentive for the proposed method. We therefore used the method to produce land 
cover fraction maps for different time points and built a time series of land cover data. 
Tests with different methods for developing time series showed that the same 
endmembers can be used for unmixing all images. Different smoothing and 
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averaging approaches applied to the vegetation endmembers, which have the 
largest annual fluctuations, do not lead to more stable and accurate time series. 
However, visual inspection of land cover presence plots shows that smoothing the 
entire time series with a Savitzky-Golay filter produces clearer results where 
disturbances can be more easily detected. 

These findings were a base for developing the steps of the complete workflow for 
mapping and monitoring fluvial gravel bars as defined in Figure 35. The main 
contribution of the proposed method to the existing body of work on land cover 
monitoring is the combination of sub-pixel mapping and time series analysis. The 
SMA enables the detection of features and processes that are smaller than the input 
satellite image pixel and cannot be mapped using hard classification. Land cover 
time series based on fraction maps therefore more accurately represent the 
conditions in the environment and are more sensitive to changes in the observed 
features. 

We established the validation method, input data characteristics, endmember 
selection strategy, satellite image classification method, and land cover time series 
development. The next chapter illustrates the application of the method for mapping 
different study areas as well as detecting changes in gravel bars. 
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Figure 35: Workflow for the proposed method for monitoring fluvial gravel bars. 
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 The Vjosa river in Albania is known for extensive gravel bars 
which are present due to specific geological properties and 
a lack of dams that would limit sediment flow. 

Foto: Liza Stančič 
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5  
MONITORING GRAVEL BARS 

This chapter describes the application of the developed land cover fraction mapping 
method to map and monitor fluvial gravel bars. First, land cover fraction maps of 
water lands for the Soča, Sava, and Vjosa rivers are presented. We tested the accuracy 
of the fraction maps. Next, we verifyed the ability of the fraction maps to detect 
changes. Finally, we demonstrated the use of fraction maps to develop land cover 
time series, compared the data to selected hydrologic parameters, and explored 
potential applications of the time series. 

5.1 Fraction maps of gravel for different rivers 
To validate the SMA-based method for mapping gravel bars, we applied it to larger 
river areas of Soča and Sava in Slovenia, and Vjosa in Albania, all of which are known 
to transport large amounts of gravel. A section of Soča also served as the study area 
for the development of the method. Vjosa is known for extensive gravel bars and 
natural process dynamics. The combined length of the river sections under 
consideration was over 250 km. 

We used Landsat 5 and Landsat 8 images to generate fraction maps in all study 
sites to gain a temporal overview of changes in gravel presence. Three images were 
chosen for each river for classification over a period of 30–35 years. All of the selected 
images were acquired during leaves-on period. Where available, the hydrological 
characteristics during image acquisition time were also checked to minimise the 
effect of water level differences on changes of gravel presence (Slovenian 
Environment Agency, 2021b). The resulting gravel fraction maps and their 
assessment are presented in the next chapters. 
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5.1.1 Soča river, Slovenia 
The satellite images used for gravel fraction mapping on the Soča river were a 
Landsat 5 image from 12 July 1990, a Landsat 5 image from 27 June 2002, and a 
Landsat 8 image from 26 June 2019. Endmembers used for the SMA of Landsat 5 
images were selected on the image from 2002 with reference from aerial 
orthophotos acquired on 18 July 2006, and transferred to the 1990 image. 

 
Figure 36: Sections of gravel presence maps on the Soča river in Slovenia. The red rectangle on the 
left shows the extent of the right plate and the violet rectangle shows the extent of Figure 38, . Data 
source: Natural Earth, 2020; Slovenian Water Agency, 2021c; Surveying and Mapping Authority of 
the Republic of Slovenia, 2016, 2021b. 
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Endmembers used for the SMA of the Landsat 8 image were selected on the 
image based on reference from aerial orthophotos acquired on 5 September 2020. 
The water lands with a 100 m buffer on each side of the whole Soča river course in 
Slovenia were analysed. For a better view of the details, the resulting map of the 
whole river course was split into several sections (Figure 36). 

Each section shows the presence of gravel on fraction maps for three different 
timestamps (Figure 37). Fraction maps of all sections are available in an online 
repository (Stančič, 2025b). Many different types of gravel bars can be observed on 
the Soča river. Most commonly, gravel bars appear along the banks of the river, but 
there are also some gravels bars in the middle of the river. Gravel bars are complex, 
formed by a combination of erosion and deposition. 

 
Figure 37: Gravel presence on the Soča river near the Kamno settlement (Section 14) in three 
different timestamps based on Landsat images. 
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5.1.2 Sava river, Slovenia 
The satellite images used for gravel fraction mapping on the Sava river were a 
Landsat 5 image from 11 July 1984, a Landsat 5 image from 18 July 2004, and a 
Landsat 8 image from 30 July 2020. Endmembers used for the SMA of Landsat 5 
images were selected on the image from 2004 with reference from aerial 
orthophotos acquired on 22 July 2006, and transferred to the 1984 image. 
Endmembers used for the SMA of the Landsat 8 image were selected on the image 
based on reference from aerial orthophotos acquired on 28 July 2020. The water 
lands with a 100 m buffer on each side of the upper section of the Sava river course 
in Slovenia were analysed. For a better view of the details, the resulting map of the 
river course was split into several sections (Figure 38). 

 
Figure 38: Sections of gravel presence maps on the upper Sava river between the spring and the 
Medvode settlement. Data source: Natural Earth, 2020; Slovenian Water Agency, 2021c; Surveying 
and Mapping Authority of the Republic of Slovenia, 2016, 2021b. The extent of the figure is shown 
in Figure 36. 
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Each section shows the presence of gravel on fraction maps for three different 
timestamps (Figure 39). Fraction maps of all sections are available in an online 
repository (Stančič, 2025a). The Sava river has fewer gravel bars than the Soča, but a 
diversity of forms can still be seen. Lateral gravel bars forming along the river bar in 
a series of erosion and deposition processes are the most common. We can also see 
how one type of gravel can be transformed into another over time, for example from 
a mid-channel bar to a point bar. 

 
Figure 39: Gravel presence on the Sava river near the Besnica settlement (Section 28) in three 
different timestamps based on Landsat images. 
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5.1.3 Vjosa river, Albania 
The satellite images used for gravel fraction mapping on the Vjosa river were a 
Landsat 5 image from 24 July 1984, a Landsat 5 image from 24 June 2002, and a 
Landsat 8 image from 7 June 2019. We analysed an over 60 km long section of the 
Vjosa river between the Memaliaj settlement and the confluence with the Shushica 
river. As no official map of water lands was at our disposal, an openly available 
polygon of the river delineated based on VHR satellite data with a 100 m buffer on 
each side was used to narrow down the area of observation (OpenStreetMap 
contributors, 2021). 

 
Figure 40: Sections of gravel presence maps on the Vjosa river between the Memaliaj settlement 
and the confluence with the Shushica river. Data source: Natural Earth, 2020; Bing, 2021. 
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Endmembers used for the SMA of Landsat 5 images were selected on the image 
from 2002, and transferred to the 1984 image. Endmembers used for the SMA of the 
Landsat 8 image were selected on the image based on the newest openly available 
VHR data (Bing, 2021; Esri, 2021). For a better view of the details, the resulting map of 
the river course was split into several sections (Figure 40). 

 
Figure 41: Gravel presence on the Vjosa river near the Iliras settlement (Section 4) in three different 
timestamps based on Landsat images. 

Each section shows the presence of gravel on fraction maps for three different 
timestamps (Figure 41). Fraction maps of all sections are available in an online 
repository (Stančič, 2025c). An issue that can be seen on fraction maps is the presence 
of single pixels with very low gravel presence in the middle of gravel bars. This is 
observed only on Landsat 5 images. The issue is not present on the Soča and Sava 
rivers, so it could be related to the endmembers used for analysis of the Vjosa river. 
Additionally, we needed to limit the area of observation to the riparian zone. In 
absence of other data, we used the openly available river polygon with a buffer as 
described above. However, this polygon is based on recent data and does not take 
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the historical river extent into account. Furthermore, the polygon includes the 
surface water only, and not the water lands as a whole. We mapped only gravel that 
is located within this polygon and so parts of gravel bars further from the present-
day river were missed. 

The Vjosa river is known for its extensive gravel bars (Fouache et al., 2001; Rössler 
et al., 2018; Spada et al., 2018; Schiemer et al., 2020). The fraction maps clearly show 
this and also highlight the fast speed of changes in gravel bar location. The gravel 
bars on the Vjosa are mostly complex, formed by a succession of deposition and 
erosion. One of the reasons for this abundance and complexity of gravel bars is that 
Vjosa is one of the last large European rivers without a dam that would trap the 
sediment. 

5.1.4 Validation of the land cover fraction maps of water lands 
The most recent fraction maps were validated with VHR remote sensing data. The 
maps were not validated in their whole extent. Instead, parts of the fraction maps 
that matched the extent of available VHR data were taken into consideration. 
Different sources of VHR data were used. The gravel map of the Soča river was 
validated with a WorldView-2 satellite image with a 2 m spatial resolution, acquired 
on 3 July 2019 and covering the extent between the settlements Kobarid and Tolmin 
in the length of almost 15 km. The gravel map of the Sava river was validated with 
aerial orthophotos with a 0.5 m spatial resolution, acquired on 28 July 2020 and 
covering the extent between the river spring at Zelenci, and the settlements 
Bohinjska Bela and Posavec. The total length of the validated map is over 60 km. The 
gravel map of the Vjosa river was validated with a WorldView-2 satellite image with 
a 2 m spatial resolution acquired on 16 July 2019. The validated section is located 
between the settlements Poçem and Qesarat with the total length of almost 25 km. 

We validated the presence of all of the land cover classes of interest – gravel, 
vegetation, and water – using the area-based approach as described in Chapter 4.2.3. 
Most of the land cover classes of interest were mapped with less than a 10% error 
(Figure 42). Vegetation was an exception with mapping errors slightly over 10% for 
the Sava and Vjosa river maps. Gravel was mapped with maximum errors around 5% 
on all rivers. The results indicate that gravel can be mapped accurately using the 
proposed SMA-based method on diverse rivers. 
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Figure 42: Absolute difference in the presence of land cover classes between reference data and 
satellite image-based land cover fraction maps for different rivers. 

5.2 Detection of changes in gravel presence 
We investigated the extent to which fraction maps are able to detect gravel bar 
changes. Rapid change detection is one of the most important advantages of using 
satellite images from remote sensing systems with a revisit time of only a few days. 
We focused on the change detection on the gravel land cover class. Gravel bars are 
dynamic geomorphological features that change rapidly. The reasons for changes 
may be natural, such as increased water levels or fluvial transport ability, or 
anthropogenic, such as in-channel gravel mining or dam construction. 

To begin with, we evaluated the ability of fraction maps to detect changes using 
simple image differencing. The results were validated with VHR reference data. Aerial 
orthophotos with a spatial resolution of 0.5 m acquired on 14 October 2017 and 5 
September 2020 were used as reference data. Additionally, a classified VHR 
WorldView-2 satellite image of the study area, acquired on 3 July 2019, with a spatial 
resolution of 2 m was used as a reference. The reference images were classified into 
the three land cover classes of interest using a random forest (RF) supervised 
classification. The satellite images used for the test were selected as close as possible 
to the acquisition of the reference data. We used Sentinel-2 images acquired on 13 
October 2017, 3 July 2019, and 5 September 2020. 

The extent of gravel bars changes due to floods and other exceptional events but 
also due to changes in discharge. To make meaningful analysis of change detection, 
it is therefore important to ensure that dates with comparable hydrological 
conditions are considered. The hydrological conditions on the observed dates were 
similar, with daily discharges ranging from 11.6 to 35.9 m3/s (Table 17). Existing 
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research shows that factors such as endmember quality and radiometric, spatial, and 
spectral resolutions of satellite images influence gravel bar mapping accuracy more 
than observed changes in hydrological conditions (Stančič et al., 2021). The 
differences are particularly negligible when considering that the discharge in the 
study area in the years 2017 to 2020 had a much wider variability – between 7.1 and 
460 m3/s (Slovenian Environment Agency, 2021b). 

Table 17: Hydrological conditions at the time of input and reference data acquisition. Data source: 
Slovenian Environment Agency, 2021b. 

image ID use image system acquisition date discharge (m3/s) 
1 input Sentinel-2 16. 10. 2017 11.6 
2 reference orthophoto 14. 10. 2017 12.3 
3 input Sentinel-2 03. 07. 2019 19.8 
4 reference WorldView-2 03. 07. 2019 19.8 
5 input Sentinel-2 05. 09. 2020 35.9 
6 reference orthophoto 05. 09. 2020 35.9 

 

We first investigated whether the fraction maps were able to detect changes 
observed on the reference data (sensitivity), and then verified whether the changes 
detected on the fraction maps could be confirmed with the reference data 
(precision). 

5.2.1 Sensitivity of fraction maps to changes in gravel 
presence 

The sensitivity of change detection using land cover fraction maps is defined as the 
ability of the change maps to indicate the processes observed on the reference data. 
To assess this, we first created a reference map of gravel change by differencing the 
classified reference images. We vectorised the resulting change map and calculated 
the areas of the change polygons. In line with our objective, we selected areas of 
change larger than 400 m2 which is equal to the size of one pixels of the input satellite 
image. All detected areas of change were validated by visual inspection of the 
reference data to confirm that change had indeed occurred. In parallel, we produced 
maps of gravel change fractions, again using image differencing. We then calculated 
the mean pixel values of the change maps within the reference change polygons. 

The calculated values show that a decrease or removal of gravel can be detected 
well, with negative values observed on the fraction change maps (Table 18). The 
extent of gravel removal was stable and evenly distributed from 2017 to 2020. 
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Table 18: Fraction change for reference data-based areas of gravel decrease. 

time period fraction change 
map mean value 

number of 
change areas 

total change 
extent (ha) 

2017–2019 −0.283 15 3.859 
2019–2020 −0.165 26 3.335 
2017–2020 −0.394 31 6.172 

 

Gravel increase or deposition can also be detected well with fraction maps, but the 
change values are smaller and therefore less evident (Table 19). Most of the 
deposition areas formed between 2017 and 2019. There was very little deposition 
between 2019 and 2020, and some of the existing deposition areas were removed. 

Table 19: Fraction change for reference data-based areas of gravel increase. 

time period fraction change 
map mean value 

number of 
change areas 

total change 
extent (ha) 

2017–2019 0.106 23 3.676 
2019–2020 0.214 6 0.857 
2017–2020 0.177 14 2.446 

 

 
Figure 43: Reference dataset and fraction map of changes in gravel between the years 2017 and 
2020 on a subset of the study area on the Soča River. Data source: Surveying and Mapping 
Authority of the Republic of Slovenia, 2016, 2021a, 2021b, 2021e; Slovenian Water Agency, 2021c. 
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The good general overlap between the changes on the reference data and the 
fraction maps can also be seen visually by comparing the two mapped datasets 
(Figure 43). As can be seen, the areas of change are often narrow and do not cover 
the entire satellite image pixel. This may be a reason for low values of fraction change 
on maps. 

5.2.2 Precision of changes detected on land cover fraction 
maps 

In a second line of investigation, we tested whether the changes detected by fraction 
map differencing actually occurred and can be confirmed by VHR reference data. The 
preparation of the input data followed the method described above. Namely, we 
examined a simple image differencing of the various time steps and compared the 
results based on fraction maps with those observed on reference data. We focused 
on the period from October 2017 to September 2020. 

 
Figure 44: An extract of pixels selected to verify the precision of the land cover fraction change map. 
Data source: Surveying and Mapping Authority of the Republic of Slovenia, 2016, 2021a, 2021b, 
2021e; Slovenian Water Agency, 2021b). 

We selected 62 non-adjacent pixels that were located in the middle of the areas 
of gravel change detected on the fraction maps (Figure 44). Gravel change areas were 
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defined as those with at least ± 10% change per pixel. The identified changes were 
then checked against reference data. 

Almost 75% of the identified changes were confirmed with reference data (Table 
20). The most common change was from gravel to water, which accounted for almost 
half of all changes detected. The hydrological conditions on the observed dates were 
similar, therefore we can assume that the changes are not only due to different water 
levels. The change from water to gravel accounted for only 16% of all changes 
detected. One-tenth of the detected changes was due to gravel overgrowth. A 
change was falsely reported in 16% of cases. Most commonly, an increase of gravel 
was noted in areas where gravel was removed. In 10% of cases, no change could be 
detected on the reference data even though maps of fraction change indicated 
otherwise. Pixels where no change could be confirmed had the lowest average values 
of fraction change, below 20%. For comparison, pixels where gravel deposition 
occurred had an average fraction change value of 30%. Where gravel removal took 
place, the average fraction change value was −47%. We conclude that values of 
fraction change above ± 30% are indicative of real change. 

Table 20: Fraction change for the analysed areas of change, identified on the land cover fraction 
change map for the period 2017–2020. 

type of change number of 
instances 

share of 
instances (%) 

average fraction 
change map value 

water to gravel 10 16 0.304 
gravel to vegetation 6 10 −0.446 
gravel to water 30 48 −0.479 
gravel to water (error) 9 15 0.254 
gravel to vegetation (error) 1 2 0.127 
no change 6 10 −0.175 
total 62 100 −0.198 

5.2.3 Correlation of observed changes between fraction maps 
and reference data 

A third and final validation of change detection was the correlation between the 
change values observed on the fraction maps and the reference data. The reference 
data were first resampled to the spatial resolution of the fraction maps, i.e., 20 m. 
Then, the values were extracted for all the pixels in the validation areas and only for 
the pixels in the change areas that were detected on the VHR reference data. The 
extracted values of the fraction maps and the reference data were then compared 
using the Pearson correlation coefficient.  
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The results show that the change maps are highly correlated, especially in areas 
of change (Pearson’s r > 0.85, p < 0.0001). The lowest correlation is observed for the 
2019 to 2020 period with r = 0.469 for the whole area and r = 0.663 for the change 
areas (Table 21). 

Table 21: Correlation between fraction and reference change maps, p < 0.0001. 

time period whole area change areas 
 r value number of 

instances 
r value number of 

instances 
2017–2019 0.542 4,691 0.860 250 
2019–2020 0.469 4,691 0.663 199 
2017–2020 0.606 4,691 0.860 254 

 

Monitoring changes of fluvial gravel bars must be carried out at time points with 
comparable hydrological conditions. This can be challenging since the acquisition of 
input satellite images as well as reference remote sensing data is fixed in time. Cloud 
obstruction further limits the amount of data that can be used for monitoring. When 
validating change detection, the task is particularly complex as the hydrological 
conditions need to be matched between the input satellite images and also the 
reference data. In our study case, the daily discharges ranged from 11.6 to 35.9 m3/s. 
Reference data were acquired very close to the input satellite images, mostly on the 
same day. When reference data were from a different date, the difference in daily 
discharges between reference and input data was 0.7 m3/s. Such fluctuations 
evidently do not alter the gravel bar extent too significantly, as the overlap between 
changes observed on reference and input data was very high. 

5.3 Assessment of land cover time series based on fraction 
maps for monitoring 

In the following section, we aim to verify whether the land cover fraction maps 
produced with SMA can be used to monitor the presence of land cover classes and 
whether these data can provide information about possible changes in water lands. 
To this end, we first tested the stability of land cover presence data and their 
correlation with changes in hydrologic data. Next, we examined how known gravel 
bar changes manifest on plots of gravel presence through time. 
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5.3.1 Comparison of land cover time series based on fraction 
maps with hydrological data 

Rising water levels inundate parts of gravel bars, reducing their extent. We checked 
whether this process could be detected in time series of gravel presence based on 
remote sensing relative to water levels measured in situ. The analysis was performed 
for the study area on the Soča between the settlements of Kobarid and Tolmin. 
Hydrologic data were obtained from a gauging station in Kobarid, located at 
46.247481° N, 13.586414° E. The data are collected by the Slovenian Environment 
Agency and are publicly available (Slovenian Environment Agency, 2021b). The 
plotted graphs show a clear negative correlation between the area covered with 
gravel and the water level (Figure 45). This was confirmed by the Pearson correlation 
coefficient of −0.643 (p < 0.0001) (Figure 46). 

 
Figure 45: Time series of gravel presence in the study area and water level at the Kobarid gauging 
station. Data source: Slovenian Environment Agency, 2021b. 

After some extreme weather events, abrupt changes in water level may occur. Such 
changes may happen too rapidly to be reflected in the change of gravel bar area and 
may not even be captured within the return period of the remote sensing system. 
This could reduce the correlation between the water level and gravel area datasets. 
To account for these abrupt processes, we tested the influence of different 
smoothing methods. For water level, we calculated a five-day moving average for 
each date, with the date in question as the last data point in the averaging 
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calculations. We also smoothed the data using a Savitzky-Golay filter. The same filter 
was applied for smoothing the gravel area. We calculated the correlation between 
values measured on the same day, considering a total of 58 different dates from 2019. 

 
Figure 46: Scatter plot with the linear regression line and coefficient of determination between 
gravel presence in the study area and water level at the Kobarid gauging station. Data source: 
Slovenian Environment Agency, 2021b. 

Table 22: Correlation between water level and gravel area in the study area on the Soča River. Data 
from 58 different dates in 2019 were considered, p < 0.0001. 

  water level 
  no smoothing five-day average Savitzky-Golay 

gravel area no smoothing −0.643 −0.601 −0.724 
Savitzky-Golay −0.656 −0.617 −0.729 

 

The results indicate a good correlation between the non-smoothed gravel area and 
water level datasets (Table 22). Using a Savitzky-Golay filter to smooth either the 
gravel area or the water level increases the correlation between the two datasets. The 
highest correlation (−0.729) is observed when both datasets are smoothed with a 
Savitzky-Golay filter. In contrast, using a five-day average water level instead of daily 
values slightly reduces the correlation. This finding supports existing knowledge that 
the five-day moving average provides useful information primarily under stable 
conditions without precipitation. 

From the correlation, we can conclude that the land cover maps are consistent 
with the expected physical processes and can be considered as valid data sources. 
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5.3.2 Using time series to detect changes in gravel presence 
In this subchapter we assess whether known change events can be detected from 
the time series data of gravel presence. The change events considered were selected 
based on field data and confirmed with reference data. Change events on the Soča 
near the settlement of Dolje and on the Sava river near the city of Kranj were selected. 

5.3.2.1 Case study at Dolje on the Soča river 

Large gravel bars are present on the left bank of the Soča near the settlement of Dolje 
(Figure 47). Reference images of the area show that large changes in the form of 
gravel bar removal occurred between 31 October 2019 and 5 December 2019. We 
focused the analysis of land cover presence on the smaller study area at Dolje, 15 ha 
in size, to check whether the changes also manifested in the gravel area. 

 
Figure 47: Overview of the study area for small-scale gravel change detection on the Soča river near 
the settlement of Dolje. Data source: Surveying and Mapping Authority of the Republic of Slovenia, 
2016, 2021a, 2021b, 2021e; Slovenian Water Agency, 2021c. 
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Figure 48: Presence of gravel in the Dolje study area in 2019 and 2020. 

 
Figure 49: Sentinel-2 true colour images showing the removal of gravel from the Soča river at the 
Dolje study area and the subsequent formation of new gravel bars. The extent of gravel bars under 
observation is shown on Figure 47. Data source: Modified Copernicus Sentinel data, 2021. 
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We plotted a time series of gravel presence in the Dolje study area for the years 
2019 and 2020 (Figure 48). The average area covered by gravel in the observed 
period is 4 ha. Reviewing the input satellite images, we found that a decrease in 
gravel presence up to two standard deviations, i.e., by a total of 2 ha, indicates actual 
changes in the size of gravel bars. 

The changes can be clearly seen on satellite images (Figure 49). The processes of 
re-formation of gravel bars at similar locations to where they were present before is 
in line with reports in existing literature (Robert, 2003). 

5.3.2.2 Case study at Kranj on the Sava river 

Extensive gravel deposits are present on the Sava river near the town of Kranj, 
downstream of a soft dam for a hydroelectric power plant (HPP) (Papler and Basej, 
2014) (Figure 50). Satellite images of the area show that large gravel bar removal took 
place between 2 July 2020 and 27 July 2020. We focused the analysis of land cover 
presence on the smaller study area at Kranj, 15 ha in size, to check whether the 
changes can be detected in a time series of gravel presence. 

 
Figure 50: Overview of the study area for small-scale gravel change detection on the Sava river near 
the town of Kranj. Data source: Surveying and Mapping Authority of the Republic of Slovenia, 2016, 
2021a, 2021b, 2021e; Slovenian Water Agency, 2021c. 
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We plotted a time series of gravel presence in the Kranj study area for the years 
2019 and 2020 (Figure 51). The average area covered by gravel in the observed 
period is 2.7 ha. Reviewing the input satellite images, we found – similar to the results 
at the Dolje study area – that a decrease in gravel presence up to two standard 
deviations, indicates actual changes in the size of gravel bars. 

 
Figure 51: Presence of gravel in the Kranj study area in 2019 and 2020. 

The changes can also be confirmed visually on satellite images (Figure 52), on the 
next page. 
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Figure 52: Sentinel-2 true colour images showing the removal of gravel from the Sava river at the 
Kranj study area. The extent of gravel bars under observation is shown on Figure 50. Data source: 
Modified Copernicus Sentinel data, 2021. 

 



109 

  

Gravel bars are important features in the river ecosystem 
that, among other functions, enable fish spawning. 

Foto: Liza Stančič 
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6  
DISCUSSION 

The study proposes a method for sub-pixel mapping of fluvial gravel bars based on 
spectral mixture analysis (SMA) using freely available Earth observation (EO) data. We 
tested several configurations to determine the most appropriate method for fraction 
map validation, optimal characteristics of the input satellite image, the most 
successful process of endmember selection, the production of fraction maps, and the 
final development of a time series of land cover presence. The method was 
developed on a section of the upper Soča river in Slovenia. Subsequently, we 
transferred the method to map gravel bars in multiple timestamps on the whole Soča 
river in Slovenia, the upper Sava river in Slovenia, and the middle Vjosa river in 
Albania. We also tested the ability of fraction maps to detect small-scale changes in 
the extent of gravel bars. Finally, we evaluated the usefulness of time series based on 
fraction maps to derive information on the hydrological characteristics of rivers and 
to detect the removal of gravel bars. 

The final chapter with discussion summarises the achievement of the proposed 
research objectives, outlines the contribution of the study to science, describes the 
limitations of the proposed method, and highlights opportunities for further work. 

6.1 Reaching research objectives 
The first part of the book describes the tests that were conducted to develop the 
method for producing accurate land cover fraction maps of fluvial environments. The 
focus of the study is on the gravel land cover class, but to gain an overview of the 
environment studied, we also mapped surface water and vegetation. These land 
cover classes were considered in accuracy assessments. Validation was performed at 
two different levels, where we first focused on the land cover fractions mapped on 
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selected single pixels (pixel-based validation), and then examined the land cover 
presence on the entire study area (area-based validation). We assessed the mapping 
results based on different input images – four-band 10 m Sentinel-2 images, ten-
band 20 m Sentinel-2 images, six-band 30 m Landsat images, and various spectral 
indices derived from the input spectral bands. The validation areas ranged in size 
from a 15 km long section on the Soča to a 25 km section on the Vjosa and a 60 km 
section on the Sava. 

The best results of the pixel-based validation showed a total mean absolute error 
(MAE) of 0.084. That means that the presence of all land cover classes of interest was 
mapped on average with the accuracy of ± 8.4% per pixel. The highest total MAE for 
a different image with a different endmember selection strategy was 0.126. The 
relative variation of MAE between the different fraction maps is low in absolute terms 
(± 4.2%). This indicates the stability and robustness of the proposed method. 
However, accuracy of the mapping varies between the different land cover classes of 
interest. Gravel is mapped the most accurately in all cases, with an average MAE of 
0.088 ± 0.016 across different fraction maps. Vegetation is mapped with the least 
accuracy, with an average MAE of 0.125 ± 0.017. Water is mapped more accurately 
than vegetation, but has a higher standard deviation in mapping accuracy with an 
average MAE of 0.099 ± 0.021. The area-based validation shows similar trends to the 
pixel-based validation. In most maps, gravel presence is mapped the most accurately, 
followed by water and vegetation. The absolute differences in land cover presence 
between the fraction maps and the reference data are mostly within 10%. The only 
exception is vegetation along the Sava and Vjosa rivers, which is overestimated by 
more than 11%. 

Based on the results summarised above, we can therefore confirm that using 
freely available satellite images with spatial resolutions of 10 m, 20 m, and 30 m, an 
overall mapping accuracy of 90% was achieved. However, some caveats regarding 
the method need to be considered. Namely, vegetation mapping with SMA is less 
accurate and often does not reach accuracies of 90% both on a sub-pixel level and 
on the study area-wide scale. 

In the second part of the study, we investigate the ability of SMA-based fraction 
maps to monitor gravel bars. We first produced fraction maps for river sections up to 
over 90 km long in three different timestamps over a 30-year period. Gravel bars were 
successfully mapped in all timestamps on different rivers. Subsequently, we were 
interested in the possibilities of change detection on fraction maps. To do this, we 
began by using simple map differencing. First, we tested the sensitivity of fraction 
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maps, also known as recall and true positive rate, i.e., whether changes observed on 
very high resolution (VHR) reference data could be detected by fraction maps. We 
focused on areas of change with a size of at least 400 m2, which corresponds to one 
pixel of the selected input satellite image (the 20 m bands of the Sentinel-2). The 
results showed that gravel removal could be successfully detected using fraction 
maps with negative values of gravel presence change. Gravel accumulation could 
also be detected, but the positive change values were smaller in our case and 
therefore less distinct. Second, we evaluated the precision of the fraction maps, i.e., 
whether the changes detected on the fraction maps could be verified with VHR 
reference data. We examined pixels of the fraction maps that were found to have a 
change of at least ± 10% between 2017 and 2020, and checked whether the change 
could also be seen on the reference data. We were able to confirm almost 75% of the 
changes reported by the fraction maps. The pixels where a change actually occurred 
showed a gravel presence change of at least ± 30%. From this we can infer that a 
change in gravel presence in a pixel of at least ± 30% indicates definite gravel 
removal or deposition. 

The second part of the change detection assessment tested the potential of using 
time series data. We plotted the total presence of gravel in a selected smaller study 
area where gravel removal was known to have occurred. The selected study areas 
were located near the Dolje village on the Soča and near the Kranj city on the Sava. 
The average extent of gravel bars was 4 ha at Dolje and 3 ha at Kranj. The extents of 
gravel bars varied with changes in water level. However, we found that a decrease in 
gravel bar size within two standard deviations of the mean indicated regular 
variations, while a larger decrease pointed to gravel bar removal. In agreement with 
the outlined results, we can thus also confirm that time series analysis of sub-pixel 
land cover maps allows the detection of seasonal changes in gravel bar extent and 
location. In addition to seasonal dynamics, changes in the extent of gravel bars due 
to exceptional anthropogenic and natural events larger than 500 m2 can also be 
detected. The extent of changes that can be detected is also influenced by the spatial 
resolution of the input satellite images. Nevertheless, we showed that freely available 
satellite images can be successfully used to detect changes in gravel bars down to 
400 m2 (one pixel) in size. 
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6.2 Contribution to monitoring of water-related ecosystems 
The application of EO data to collect environmental variables and monitor the state 
of the natural environment is an important field that has also been highlighted in the 
United Nations 2030 Agenda which formulated the Sustainable Development Goals 
(SDGs) (UN, 2015). The main motivation that guided the topic of this study was to 
contribute to the work on SDG indicator 6.6.1: Change in the extent of water-related 
ecosystems over time (UN, 2017). Fluvial gravel bars are important water-related 
features that are often difficult to map and monitor due to their small extent. 
Therefore, by applying the SMA to map fluvial gravel bars, we contributed to the 
development of new knowledge and experience in using EO data to monitor 
progress towards the SDGs. 

The main scientific contribution of this study is the development of a new 
procedure for rapid and accurate mapping of gravel bars and other water-related 
ecosystems. The workflow uses freely available satellite images with short revisit 
periods, making it well suited for monitoring. In addition, the produced land cover 
maps of water-related ecosystems can inform planning and management decisions. 
Comprehensive large-area maps are particularly valuable for managing fluvial 
ecosystems, where changes in one part of a basin may affect areas far downstream. 

The production of land cover maps for a long period provided a good overview 
of the dynamics of gravel bars in the past. Additionally, with frequently available 
input satellite images we were able to rapidly detect and monitor changes over a 
short time period. This supplementary information on past characteristics and timely 
information on changes combine to contribute to a better understanding of the 
dynamics of fluvial gravel bars. Our results show that gravel bars are very dynamic 
with rapidly changing extents. Water level has a major influence on the extent of 
gravel bars. Despite changes in size and shape, the locations where gravel bars occur 
in a river channel are constant. Even after gravel bars are removed, new deposits 
quickly form at the same location. 

The proposed method was developed on river sections for which several different 
VHR remote sensing as well as in situ data were available. This allowed validation of 
the results and determination of the optimal workflow. We analysed the 
transferability of the workflow to other areas and found that it is possible and 
provides accurate results. The method can be used to study other rivers for which 
there may not be as much data available. Studying different rivers may lead to a new 
understanding of the effects of natural and anthropogenic changes on the land cover 
of water-related ecosystems. 
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6.3 Limitations of the proposed method 
The main limitations of the proposed method are related to cloud cover and terrain 
shadows, which are well-known problems of optical images. Mountainous areas, 
which were the focus of many of our observations, are frequently covered by clouds 
due to rising air masses. Additionally, river valleys are located between steep slopes, 
resulting in shadowing. This issue is particularly pressing during the winter months 
when the Sun incidence angle is low. We mitigated cloud obstruction problems by 
using a cloud masking algorithm (Sinergise, 2021). We attempted to address 
topographic normalisation with radiometric corrections, but the results were not 
satisfactory. Future work could test different radiometric correction algorithms, such 
as the Teillet regression or the Statistical Empirical model (Teillet et al., 1982), the b 
correction (Vincini et al., 2002), the Modified Sun-Canopy-Sensor correction (SCS+C) 
(Soenen et al., 2005), the Variable Empirical Coefficient Algorithm (VECA) (Gao and 
Zhang, 2007), or the Path Length Correction (PLC) (Yin et al., 2018), which have been 
shown to be successful in other studies (Ma et al., 2021). 

The difficulty in distinguishing land cover classes is partly due to their physical 
characteristics. Rivers are often shallow, so the sensor detects gravel reflectance from 
the riverbed in addition to surface water, which can lead to misclassification. 
Problems with vegetation detection occur primarily when foliage is not fully 
developed and the sensor detects bare ground or shade under trees.  

In addition to the limitations that apply generally to land cover classification 
based on multispectral optical images, issues related to SMA in particular are also 
important. The SMA determines the fraction of land cover presence on an individual 
pixel by examining the spectral signal from the observed pixel and comparing it to 
the spectral signals of the input endmembers. The land cover fractions are 
determined based on the degree of similarity between the spectral signals of the 
observed pixel and the endmembers. The selected endmembers must therefore 
have sufficiently different spectral properties for the SMA to be able to differentiate 
between their respective contributions to the spectral signal of the observed pixel. It 
is therefore necessary to make simplifications and generalisations when selecting the 
land cover classes that are considered in the analysis. 

In our study of mapping gravel bars, the most severe simplification was the 
inclusion of built-up areas in the gravel class. The gravel presence maps therefore do 
not differentiate between gravel bars and built-up areas. We mitigated this problem 
by limiting the study area to water lands in order to include only riparian areas in the 
analysis. However, some built-up is present even in water lands, particularly in larger 
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settlements. This could be addressed with the addition of different EO data such as 
synthetic aperture radar (SAR), or in the post-processing stage with the use of 
auxiliary datasets of buildings and infrastructure for masking. 

The usability of the SMA-based approach depends on river width relative to the 
spatial resolution of the EO data. While it enables the detection of gravel bars smaller 
than the pixel size, its performance decreases in very narrow river sections due to 
increased spectral mixing with surrounding land cover. Therefore, the method is 
most effective in river reaches where the channel width is sufficient to ensure that 
gravel bars contribute a significant spectral signal within individual pixels. 

The accuracy of the SMA depends on the ability of the selected endmembers to 
represent the land cover classes of interest. Validation of our fraction maps indicates 
that gravel can generally be modelled well with the selected endmembers. On the 
other hand, vegetation and water are more problematic for mapping. Vegetation in 
the study areas occurs in diverse forms, mostly as mixed forest, but also as shrubs and 
grasslands. The general shapes of the spectral signatures are similar across different 
vegetation forms, but each plant species still has slightly different spectral 
characteristics. These differences can lead to errors when a single endmember is used 
to model all of the different vegetation classes. Similarly, water can have different 
spectral responses depending on Sun glint, surface waves, depth, sediment content, 
microorganisms, and dissolved organic matter (Guneroglu et al., 2013; Japitana et al., 
2019; Vouvé et al., 2009). Thus, different models could be used to represent water 
based on different endmembers. The model with the smallest RMSE could then be 
selected as the final model for mapping water (Cavanaugh et al., 2011). A similar 
strategy could be used for vegetation. 

Real changes of gravel bars can only be detected with observations during times 
of similar hydrological conditions. Otherwise, the detected changes could be the 
result of different water levels and not changes in bedload. This may limit the studies 
of rivers with fewer gauging stations. Radar altimetry has been shown to provide 
good ancillary data in the case of ungauged rivers and could be used to inform 
further analysis and allow an unbiased change detection (Bogning et al., 2018). 

6.4 Opportunities for further work 
The proposed method can be used to study and monitor other rivers where 
important gravel bar habitats are present. A well-known European example is the 
Tagliamento river in Italy, which forms extensive gravel bars with high biodiversity. 
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The river is also very dynamic and therefore interesting to observe frequently (Gurnell 
et al., 2001; Henshaw et al., 2013). Rivers in different climatic zones and with various 
geologic characteristics of the basins can be studied to learn more about the 
geomorphological processes that shape them. 

This study explored several characteristics that are important for improving the 
accuracy of SMA-based land cover fraction maps. These findings and the proposed 
workflow can be used for mapping various phenomena. The only limitation in using 
this method is that the observed land cover classes must have very distinct and 
different spectral properties. This is necessary for the SMA to accurately determine 
the contributions of the different land cover classes to the mixed signal in a single 
pixel (de Vries et al., 2021). For example, it is difficult to correctly map different tree 
species that have a very similar spectral signature shape with SMA. However, 
delineation of bare ground or built-up areas and vegetation or water can be 
successfully performed. Therefore, examples of other possible applications of the 
proposed method are monitoring of urban sprawl, rock-fall, deforestation, and open-
pit mining. 

Monitoring gravel bars with the proposed method could be complemented with 
additional data in the future. In particular, the use of SAR could lead to better results. 
The SAR data could be integrated in a pre-processing stage, to more accurately 
delineate the area of observation or in the post-processing stage to mask out areas 
that are not of interest. Differences in texture are picked up well by SAR, which could 
help in differentiating between gravel bars and built-up areas. Data from SAR have 
been shown to be successful in separating water from other land cover classes (Musa 
et al., 2015). Additionally, SAR is not affected by clouds, which is an important 
consideration when studying mountainous regions where cloudy conditions are 
frequent. The successful use of combined SAR and multispectral data for land cover 
classification has already been demonstrated (Sukawattanavijit et al., 2017). 
Importantly, with the Copernicus programme supporting the operation of the 
Sentinel-1 SAR system, the long-term operational data availability is assured. 

Hydrological conditions influence the reliability of monitoring changes of gravel 
bars. If changes are assessed between two time points with very different conditions, 
the differences in water level could induce changes that are not due to flood events 
or infrastructural interventions. In the present study of change detection, we selected 
images from the same season and thus ensured comparable hydrological conditions. 
However, this aspect of change detection can be developed further with more 
emphasis placed on selecting dates with very similar conditions. 
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Steep slopes with erosion-active cliffs and extensive scree 
fields are an important source of clastic material for valley 
river systems. The released material is transported into the 
valleys by gravitational and surface processes, where it 
accumulates in the form of gravel bars and forms an 
important link between the mountain hinterland and the 
river valley. 

Foto: Žiga Kokalj 
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7  
CONCLUSION 

The study proposes a novel method for monitoring gravel bars in rivers using Earth 
observation (EO) data. Gravel bars are dynamic geomorphological features that 
provide many important ecological functions. Natural and anthropogenic changes in 
the fluvial environment rapidly lead to changes in the gravel bar extent and location. 
Gravel bars can therefore be considered indicators of alterations and disturbances in 
the fluvial environment. Monitoring gravel bars using field mapping is time 
consuming and therefore unfeasible for covering a large area simultaneously to 
provide an overview of the impact on the wider river system. Satellite remote 
sensing, with its frequent observations, increasingly open availability, and uniform, 
wide-area coverage, provides an ideal data source for monitoring natural processes. 
However, freely and openly available satellite images have a spatial resolution of 
10 m at best, which may be too coarse to accurately detect gravel bars. We therefore 
tested soft classification as a method to observe features smaller than the spatial 
resolution of the EO sensor. Sub-pixel mapping was performed using spectral 
mixture analysis (SMA). We set several research objectives to develop a SMA-based 
mapping method for fluvial gravel bars that is transferable to different locations and 
requires only openly available data. The study area used for method development 
and related testing was located on the Soča river in northwestern Slovenia between 
the settlements of Kobarid and Tolmin. 

Gravel bars can form in different parts of the river channel by both deposition and 
erosion processes. Once formed, their general location remains relatively stable, but 
their extent varies depending on the water level. Even where gravel bars are 
completely removed during resource excavation operations, they usually re-form 
quickly in the same location and with a similar extent. These characteristics of gravel 
bar development were also confirmed by our observations. We were able to obtain 
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this information from time series of fraction maps showing the presence of gravel 
bars. The development of these maps was the result of many different tests that 
allowed us to gain a better understanding of the SMA and the features that define its 
accuracy. 

We used very high resolution (VHR) aerial orthophotos and satellite images and 
classified them into the land cover types of interest using a Random Forest classifier 
with 500 trees. These classifications were used as reference data for validating the 
land cover fraction maps. We used two different validation methods, one focusing 
on pixel-level accuracy and a second evaluating the accuracy of land cover detection 
across the entire study area. The input data for the sub-pixel mapping were openly 
available satellite images from the Sentinel-2 and Landsat programmes. When 
working with Sentinel-2, we used the 20 m spectral bands because the majority of 
bands are acquired at this spatial resolution. The bands originally acquired at 10 m 
were resampled to 20 m. Detailed and abundant spectral information is critical for a 
successful SMA. Therefore, we supplemented the information from the spectral 
bands with selected spectral indices to better discriminate between gravel, 
vegetation, and water. 

As described in the literature, appropriate endmembers are key to accurate 
fraction maps. We tested several configurations to determine the optimal 
characteristics for endmember selection for mapping gravel bars. Automatic 
endmember extraction was found to result in products with similar accuracy as using 
manually selected endmembers. However, even with automatic endmember 
extraction, operator intervention is required to ensure that the selected endmembers 
actually represent the land cover of interest and are not outliers. The approach that 
produces the most accurate fraction maps must therefore be semi-automatic. We 
found that three to five endmembers per SMA are optimal and that, contrary to 
results from the literature, adding shade as a separate endmember does not 
contribute to the accuracy of the fraction maps. In addition, endmembers selected 
on one satellite image can be used for the SMA of another satellite image from a 
similar geographic zone and phenological phase. 

We compared the produced fraction maps of gravel bars with results from a hard 
classification using the Spectral Angle Mapper applied to the same input data to 
assess the contribution of soft classification to mapping accuracy. The results show 
that soft classification more accurately represents land cover in the studied 
mountainous riparian environment. After confirming the suitability of fraction maps, 
we further developed and applied the method. Time series of land cover presence 
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were derived from fraction maps and smoothed using a Savitzky–Golay filter to 
reduce outliers while preserving distinct changes. The method was extended to the 
upper and middle sections of the Soča River, the upper section of the Sava River in 
Slovenia, and the middle section of the Vjosa River in Albania, covering over 250 km 
of river length. Landsat images were used to produce fraction maps of gravel bars 
over the past 35 years. 

Finally, we evaluated the ability of the fraction maps produced to detect changes 
in gravel bars. First, we tested simple image differencing of two fraction maps. To 
ensure that the observed changes resulted from flood events, gravel mining, or other 
interventions, and not just changes in water level, we selected dates with similar 
hydrologic conditions. We were able to show that change detection using this 
method had high sensitivity, detecting areas of change with an extent of at least 
400 m2 or one pixel of input satellite images. The change maps also showed 
satisfactory precision, with nearly 75% of detected changes confirmed by VHR 
reference data. Next, we investigated whether time series of gravel presence could 
also be used to detect change. The extents of water and gravel can vary following 
changes in water level. However, we found that a decrease in gravel bar size within 
two standard deviations of the mean indicated regular variations, while a larger 
decrease pointed to gravel bar removal. 

Additionally, we compared the EO-based time series of land cover presence with 
in situ hydrological data. We found a high statistically significant negative correlation 
between the gravel presence and the water level measured at a gauging station in 
the study area. This suggests that remote sensing results can be used to provide 
information about processes in areas where accurate and long-term in situ 
measurements are not established. 

Thus, we achieved the research objectives set at the beginning of the study and 
obtained the expected results. These results can serve as a starting point for mapping 
different land cover types, such as built-up areas, bare ground, or anything else with 
distinct spectral properties and a tendency to occur at extents too small to be 
detected with openly available satellite images. In the case of extending the method 
to other land cover types, the tests defined by the workflow for deriving the method 
proposed in this study would need to be repeated to determine the optimal mapping 
method for the particular land cover type under observation. The questions relating 
to endmembers are particularly important to accurately detect the land cover type 
of interest. Nevertheless, we believe that our study provides a good framework for 
further research and extension of the method to other land cover types. 
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A well known axiom in nature conservation is that processes which cannot be 
observed cannot be understood and features which cannot be monitored cannot be 
protected. Increasing volumes of EO data offer an opportunity to address such 
concerns about data gaps. We hope that the workflow that was developed in the 
scope of our research in addition to our findings will contribute to leverage the 
available data. The sub-pixel mapping method ensures that smaller features, which 
may have an important influence on environmental functions, are also considered in 
monitoring programmes. New insights into gravel bar dynamics may inform future 
efforts in protecting natural river ecosystems and restoring altered ecosystems closer 
to their natural state. This will enable a full functioning of river ecosystems with all 
the social and ecological benefits that they bring. Additionally, the developed 
method is opening several intersting possibilites for further technical solutions and 
thematic applications. There is therfore ample space to use available data in 
improved workflows to increase our understanding about the world and 
consequently lead a more responsible existence. 
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The natural riverbank is a popular refuge for those seeking 
peace and a connection with nature. It offers visitors a 
place to relax, take walks, observe life by the water, and 
enjoy simple yet precious moments in a natural setting. 

Foto: Žiga Kokalj 
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10  
GLOSSARY

Endmember, pure pixel: Pixel 
representing the spectral properties of a 
single land cover class. Endmembers may 
be measured with a spectro-radiometer, 
found on an actual satellite image, or 
estimated based on image data. 

Endmember selection, endmember 
extraction: Determination of pixels 
representing land cover classes of 
interest on a satellite image. The 
selection can be done manually with the 
help of reference data with a higher 
spatial resolution, or automatically, for 
example with a region growing 
algorithm to find the extremities of the 
image feature space. 

Fully constrained spectral mixture 
analysis: Method for calculating land 
cover presence where the fraction values 
within each pixel need to sum up to one 
and must be non-negative. 

Hard classification: Method for 
recognising features on a satellite image 
where the whole area of each pixel is 
assigned to a single class. 

Image endmember: Pixel on a satellite 
image chosen to represent the spectral 
properties of a particular land cover class. 
Reference data with a higher spatial 
resolution is usually necessary to ensure 
pixel purity. 

Land cover fraction, land cover 
abundance: Share of a pixel covered by 
a particular land cover class. The share is 
determined based on the degree of 
similarity of the pixel’s spectral signature 
to the spectral signature of the particular 
land cover class. 
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Non-linear spectral unmixing: Method 
for calculating the presence of selected 
land cover classes in a setting where the 
classes are very closely mixed. Each 
incoming photon therefore interacts 
with more than one class. Non-linear 
spectral unmixing is necessary, for 
example, when analysing the materials 
present in sand or soil. 

Non-pixel endmember: Spectral 
properties of a selected land cover class 
that are not derived from a single pixel on 
a satellite image, but estimated based on 
the image data. Non-pixel endmember 
need to be used when images are highly 
mixed and no pure pixels are present. 

Soft classification: Method for 
recognising features on a satellite image 
where the cover of each pixel is defined 
as a mix of different land cover classes. 
The mix is represented by land cover 
fractions. 

Spectral angle mapper: Method for 
assigning selected land cover classes to 
pixels based on a comparison of angles 
between vectors of reference spectra and 
pixels spectra. The smallest calculated 
angle means the biggest similarity 
between the two spectra under 
consideration. 

Spectral mixture analysis: Method for 
determining the presence of selected 
land cover classes in a pixel based on the 
pixel’s spectral properties. 

Transferred endmember: Pixel chosen 
to represent the spectral properties of a 
land cover class selected on one satellite 
image and used to determine land cover 
fractions on another satellite image. 
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