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1 INTRODUCTION

1.1 KARST: UNDERSTANDING IT AND THE AIM
OF THIS WORK

Karst1 is a typical landscape on soluble rocks with a distinctive hydrology,
unique landforms and fantastic underground features which attract people
to observe and study it. The longest cave systems reach beyond 500km,
the deepest approach a vertical distance of 2km (> 1.6km at the time of
writing) between their highest and lowest points. A mature karst landscape
is characterised by the absence of surface flow. Karst surface covers about
10%-20% of the Earth’s land ice-free area (Ford and Williams, 1989).

Study of karst is not only important for its unique features, it has also
practical importance: about 25% of the world population drinks
water from karst aquifers (Ford and Williams, 1989). One should
not forget that the fresh water supply is expected to be one of our mayor
problems in this century.

The facts quoted above should be sufficient to justify this work which
deals with the early evolution of karst.

The main process rendering karst unique is the dissolution of bedrock
by water. The most common types of karst rocks are sedimentary carbon-
ates, limestone and dolomite. Gypsum, anhydrite, salt and quartzite karst
areas are also known around the world. Typical karst rocks have a low
primary porosity, but attain a considerable secondary porosity during the
karst evolution.

Most karst features owe their origin to the subsurface drainage of water
in karst aquifers. The question how do karst aquifers evolve in time and
consequently how do caves develop, has puzzled scientists and observers for
a long time. And it still does.

To understand karst and its evolution one has to study and understand
the basic processes behind it. Basically there are two approaches to this:

• Large to small scale, empirical approach which describes the basic
processes mainly due to the observation of the whole.
1As a Slovenian I must point out that the term karst originates from the Slovenian region

Kras, where these phenomena were objects of scientific studies for the first time.
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• Small to large scale, analytical approach builds complex systems
with simple elements based on the basic principles of physics and chem-
istry.

Neither is good alone. The empirical approach normally leads to wrong
conclusions because the general picture is too complex. The analytical
approach uses an extremely simplified model of reality and neglects many
parameters which can be important. One or the other concept remains just
a concept or a hypotheses if the two do not meet. Once both ways unite a
good theory might appear.

The idea of this work is to contribute a few building blocks to the
bridge between the empirical and analytical concepts from the side of the
analytical approach.

1.2 A KARST AQUIFER AND ITS PROPERTIES

Before we give a review on speleogenetic2 ideas, we define ”our playground”:
a karst aquifer. The term aquifer defines a rock body sufficiently perme-
able to transmit groundwater (Bear and Verruijt, 1987). What makes karst
aquifers specific is that their transmissivity and storage are increasing in
time by bedrock dissolution. Typical karst aquifers exhibit a small primary
porosity, but attain high secondary porosity due to the circulation of water
which dissolves bedrock. In the initial state of a karst aquifer flow of water
is limited to fractures and bedding planes. Our study will deal with flow
systems which owe their origin to meteoric water circulating within the
massif of limestone or other soluble rocks. This way the so-called ”com-
mon caves” (Ford and Williams, 1989) are formed. In most of the following
discussion, we assume limestone fractured aquifers.

Pure water cannot dissolve much limestone. Already in the 18th cen-
tury it was well accepted that water containing CO2 is the aggressive agent
in karst. Only atmospheric CO2 was considered at that time. This way
the CO2 − H2O solutions cannot dissolve much limestone, since the CO2

represents only about 0.03% of the atmosphere. Later Swinnerton (1932)
stressed the importance of soil CO2. The CO2 content in the soil ”atmo-
sphere” is often above 5% (Ford and Williams, 1989).

Mature karst aquifers exhibit an extreme heterogeneity of hydraulic
conductivities. They range from 10−10 m/s up to 10−1 m/s (Worthington,
1999; Halihan et al., 1999). The lowest conductivity is due to the inter-
granular porosity of the rock matrix, the highest is from the large cave
conduits. Therefore the nature of water flow in karst aquifers can be of any
type: from laminar (Darcian) to turbulent flow in filled or open channels.

2Note that speleogenesis (cave formation) is a part of the ”evolution of karst aquifers”.

12
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Figure 1.1: A simple conceptual model of a karst hydrological system with its elements
and flow systems.

The key question of speleogenesis is how does this secondary poros-
ity evolve? How does a relatively homogeneous aquifer characterised by
rock matrix, fractures and bedding planes with aperture widths less than
10−2 cm evolve to such a complex structure like extensive cave systems?

1.3 CONCEPTUAL MODELS OF CAVE
DEVELOPMENT IN KARST AQUIFERS

In the 18th and 19th (Ford and Williams, 1989) century big steps were
taken once the importance of chemical denudation was stressed and basic
equations on fluid flow in porous and fractured rock aquifers were given.

Most of the modern concepts of speleogenesis were put forward between
1900 and 1950. The theories were rather conflicting, since each of them was
based on a specific location and tried to be generalised. Three hypotheses
were accepted at that time (Ford and Williams, 1989).

1. Vadose hypothesis implies that caves were excavated by open channel
cave streams in the vadose zone.

2. Deep phreatic hypothesis assumes that caves develop deep below the
water-table in the phreatic zone.

3. Water-table hypotheses (Swinnerton, 1932; Rhoades and Sinacori, 1941)
is based on the fact that most of the water movement is along the water-
table at the top of the phreatic zone. Therefore, the caves develop there.
See Fig.1.2.
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Each of these hypothesis was at least partially right. Evidences all around
the globe supported them, but none was generally valid. Ford and Ewers
(1978) linked these hypotheses into one genetic theory. They proposed a
four-state model in which deep phreatic and water-table caves are the end
members. In their model the fissure frequency determines what kind of
cave develops. See Fig.1.2.

a) b)

1.Bathyphreatic cave

2.Phreatic cave with multiple loops

3.Mixture of phreatic and
watertable components

4.Ideal watertable cave

Figure 1.2: a) The water-table cave hypothesis proposed by Swinnerton (1932).
b) Ford and Ewers’s (1978) four-state model. Depending on the fissure frequency
various types of caves evolve: When fissure frequency is low, bathyphreatic caves
(state 1) evolve. With increasing fissure frequency the number of phreatic loops
increases ( states 2 and 3). High fissure frequency results in the evolution of
water-table caves. Extremely low or extremely high fissure frequency do not allow
evolution of caves (states 0 and 5, not shown here). Both figures are taken from
Ford (1999).
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1.4 MODELS DERIVED FROM BASIC PRINCIPLES
OF PHYSICS AND CHEMISTRY

The basic knowledge of the properties of karst aquifers and of dissolution
kinetics of limestone, as well as access to computational power, enabled
another approach towards understanding of the evolution of karst aquifer.

Starting from the basic principles of groundwater chemistry and hydrol-
ogy and applying parameters and boundary conditions typical for karst, the
first numerical models were presented in the late 1980s by Dreybrodt (1990)
and Palmer (1991). They presented the evolution of a basic building block
of karst aquifers: a single fracture.

Later Lauritzen et all. (1992) and Howard and Groves (1994a; 1994b)
presented a model of speleogenesis on two dimensional networks. A further
step was made by Siemers and Dreybrodt (1998; 1998; 2000) who presented
the evolution of 2D percolation networks and implied various lithological
and hydraulic conditions. They also presented the evolution of 2D networks
in the vicinity of hydraulic structures; this is the case where the potential
of numerical models is of great practical importance.

Recently Clemens et all. (1997a; 1997b; 1999) used a double porosity
model to couple the conduit flow with the flow in the surrounding con-
tinuum and to calculate the evolution of conduits under constant recharge
conditions.

A similar approach was made by Kaufmann and Brown (1999a; 1999b)
who simulated the double porosity by incorporating the prominent fractures
directly into continuum.

THE CONCEPT OF THIS WORK AND
THE PHILOSOPHY BEHIND IT

There are several ways to build up numerical models (of karst aquifer evo-
lution). The first type, let us name them ”application oriented”, can be a
three-dimensional model of an aquifer with multiple porosity and complex
boundary conditions applied to it. Such models can be developed nowadays
but their interpretation can be as hard as the interpretation of observations
in nature. Of course in the model one can envisage many different scenarios
and play with the parameters much easier than nature does. Anyway the
traps are similar to those in the empirical approach.

What we are after are the basic processes and mechanisms. Therefore
we employ the ”processes oriented models” and start with the simplest
elements of karst aquifers, simplified equations, and build more complex
models gradually, not adding another parameter before the effects of all the
old ones are fully exploited. This approach is of course time consuming,
since the addition of any parameter demands the analyses of its correlation

15
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hin

h*in

hout

Qin

Figure 1.3: The elements of a karst aquifer discussed in this work. 1: A single fracture
under constant head conditions. 2: 2D fracture network under constant head conditions.
3: Vertical section of an unconfined aquifer with a constant recharge and constant head
conditions applied to it. As shown, a dense network of fine fractures and a coarse network
of prominent fractures are superimposed to simulate the multiple porosity character of
karst aquifers. The thick dashed line WT represents the position of the water-table. The
hydraulic heads at the inputs and outputs are denoted as hin, h∗

in and hout.

with all the parameters used before. But according to our experience, one
can easily misinterprete the results of more complex models without a deep
understanding of simpler ones. The final goal is to make an ”application
oriented” model and to fully understand its results.

The path of this work starts with simple models and takes us towards
more complex ones. It resembles the historical development of the models
presented so far. Especially in the simple systems our approach will be
partially analytical, i.e. we will try to make analytical approximations
to elucidate the obtained numerical results. This way we gain a deeper
understanding of the models and more general results.

Fig.1.3 schematically presents the approach we take. In Chap.3 the
evolution of a single fracture as a basic element of karst aquifers is discussed.
It reviews some of the work presented so far from analytical point of view
and introduces new geochemical conditions and hydrological conditions.

Chap.4 discusses the evolution of 2D networks under constant head
conditions. We could also define it as the evolution in length and breadth
as used by Ford and Ewers (1982; 1989). The presented models correspond
to the other 2D models (Siemers and Dreybrodt, 1998). New parameters
are added by introducing various geochemical conditions.

Chap.5 presents the evolution of a karst aquifer in length and depth.
It somehow resembles the empirical theories of cave genesis quoted above.
This is also the most comprehensive model that we will present and is our
closest approach to nature.

16
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The mathematics used for the analytical approximation consists mostly of
basic calculus and should not distract one from reading the work. The
number of cases which we handle analytically drops with the complexity of
the model.

17
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2 EQUILIBRIUM CHEMISTRY AND
DISSOLUTION RATES OF
LIMESTONE IN H2O − CO2

SOLUTIONS

The understanding of chemical processes is the key for understanding early
karst evolution. This chapter gives a quick review on this. To model
karst evolution we need to know the dissolution rates of limestone in karst
environments. These are a function of the undersaturation of the solution,
and therefore knowledge of equilibrium chemistry is required. The first
part of this chapter focuses on equilibrium chemistry of the H2O −CO2 −
CaCO3 system, the second on its chemical kinetics. One has to be aware
that the knowledge of equilibrium chemistry alone is not enough to model
and understand early karstification. As mentioned in the introduction we
only regard the action of CO2 − H2O solutions. Note that karstification
of limestone might also be caused by other aggressive solutions, such as
sulphuric acid in the case of hypogenic karst (Ford and Williams, 1989).
These processes will not be discussed in this work.

For further reading on equilibrium chemistry and limestone dissolution
rates in karst environments the reader is referred to (Dreybrodt, 1988, 1997;
Dreybrodt and Eisenlohr, 2000; Dreybrodt, 2000).

2.1 EQUILIBRIUM CHEMISTRY OF
H2O − CO2 − CaCO3 SYSTEM

The equilibrium chemistry of the CaCO3 − H2O − CO2 system is well
known and discussed in the literature (see (Dreybrodt, 1988, 2000) for
more details). As mentioned, the most common aggressive agent in karst
is CO2 rich water which percolates through the limestone massif, thus we
first focus on pure CO2 −H2O solution.

Carbon dioxide dissolves in water. The pCO2 of the surrounding atmo-

18
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sphere and the activity of dissolved CO2 are related by Henry’s law

(COaq
2 ) = KHpCO2 . (2.1)

KH is the Henry’s constant which is temperature dependent; at 10◦C
log(KH) is about −1.27.

CO2 reacts with water to form H2CO3. This dissociates in steps to
H++HCO−

3 and further to H++CO2−
3 . The dissociation steps are governed

by mass action law with mass action constants K1 and K2 for each step
respectively.

The saturation state of the solution with respect to CaCO3 is defined
by

Ω =
(Ca2+)(CO2−

3 )
Kc

, (2.2)

where

Kc = (Ca2+)eq(CO2−
3 )eq. (2.3)

The subscript eq denotes the state of equilibrium and Kc is the solubility
constant. Round brackets denote the activity of ionic species. At 10◦C the
logarithm of Kc is −8.41.

Protons produced by dissociation of H2CO3 react with carbonate ions
released from the mineral:

CO2−
3 + H+ → HCO−

3 . (2.4)

This reaction keeps the ion activity product (Ca2+)(CO2−
3 ) sufficiently low

and enables the dissolution of calcitep.
The reaction mechanisms at the calcitep surface in the presence of car-

bonic acid were first described by Plummer et al. (1978). They proposed
three surface reactions which can be summarised by the following overall
reaction:

CaCO3 + CO2 + H2O → Ca2+ + 2HCO−
3 . (2.5)

From Eq.2.5 an important conclusion follows: for each Ca2+ ion that enters
the solution one molecule of CO2 is consumed and converted into HCO−

3 .
Further derivation of equilibrium equations will be omitted here and

only results important for the following chapters will be presented. For
details the reader is referred to (Dreybrodt, 1988).

The basic result of the equilibrium chemistry is the equation describing
the equilibrium concentration of Ca2+ as a function of1 pCO2 :

[Ca2+]eq =
(
pCO2 ·

K1K2KH

4K2γCaγHCO3

)1/3

. (2.6)

γCa and γHCO3 are the activity coefficients of Ca2+ and HCO−
3 at equilib-

rium. K1 and K2 are the mass action constants for the both dissociation
steps.

1The equation given is obtained by using the approximation 2[Ca2+] = [HCO−
3 ]. Otherwise

a numerical procedure is required to obtain the solution.
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BOUNDARY CONDITIONS FOR ACHIEVING EQUILIBRIUM

Dissolution of calcite by CO2 containing water proceeds under various
boundary conditions:

• Open system conditions: the solution is in contact with limestone
and a CO2 containing gas phase. The flux of CO2 between the liquid-gas
interface replaces the CO2 consumed by dissolution of calcite.

• Closed system conditions: there is no interface between an atmo-
sphere and the solution. CO2 consumed by dissolution of calcite is not
replaced, therefore its concentration decreases with increasing Ca2+ con-
centration.
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Figure 2.1: Chemical pathways of the solutions in the open and closed system. The
thick line represents the CO2 −Ca2+ equilibrium curve as given in Eq.2.6. Dashed lines
represent the pathway of solutions in the open and closed system. In the case of a closed
system one CO2 molecule is consumed for each Ca2+ ion entering the solution. At the
cross-sections between the pathways and equilibrium curves, the equilibrium concentra-
tion can be read. The thin solid lines point to the calcium equilibrium concentration.

For the open system the equilibrium concentration is given by Eq.2.6. In the
phreatic zone of karst aquifer which is the domain of our models, dissolution
proceeds under closed system conditions. In this case one has to consider
that pCO2 in the solution decreases as dissolution proceeds. Thus Eq.2.6
cannot be directly applied. If piCO2

is the partial pressure of CO2 prior to
any dissolution of calcite, than the pCO2 at the closed system equilibrium
is given by:

pCO2 ≈ piCO2
− [Ca2+]eq

KH

. (2.7)

Inserting this into Eq.2.6 a cubic equation for [Ca2+]eq is obtained. Its
solution gives the [Ca2+]eq for the closed system.
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Figure 2.2: Equilibrium curve and the regions of supersturated and undersaturated
solutions. Mixing of saturated solutions A and B, produces an undersaturated solution
C. The arrows point to the calcium concentration of solution C and its equilibrium
calcium concentration. See text for details.

See (Dreybrodt, 1988) for the intermediate cases where the solution is
in contact with a limited amount of CO2 rich gas and for the cases where
boundary conditions change during dissolution.

Fig.2.1 shows the pathways of the solution when dissolving under open
and closed system conditions. The thick solid line represents the equilib-
rium curve as given by Eq.2.6. The dashed lines show the pathways of the
solutions in open and closed system as denoted. The intersections between
dashed lines and equilibrium curve are the equilibrium points. The solid
arrows point to the equilibrium Ca2+ concentration for the open and closed
system, respectively.

MIXING OF SATURATED SOLUTIONS IN THE CLOSED SYSTEM

The non-linearity of the CO2 − Ca2+ equilibrium curve has an important
consequence shown in Fig.2.2. The equilibrium curve divides the regions of
undersaturated and supersaturated solutions. If the ([CO2], [Ca2+]) coor-
dinate of the solution is above the equilibrium curve it is undersaturated,
if it is below, the solution is supersaturated. For convenience, to avoid
to many brackets, we will write (CO2, Ca2+) instead of ([CO2], [Ca2+]).
Fig.2.2 shows the mixing of two solutions A and B, saturated with re-
spect to calcite. The (CO2, Ca2+) pair of the resulting solution C is on
the line connecting A and B and is in the undersaturated region due to
the non-linearity of the equilibrium curve. The arrows point to the Ca2+

concentration cC of the mixed solution C and its equilibrium concentration
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ceq. The importance of this phenomenon to the karst evolution was stressed
by Bögli (1964). ”Mischungkorrosion”2 is not a crucial cave forming mech-
anism, although it enhances early karst evolution as presented recently by
Gabrovšek and Dreybrodt (1999b). This is discussed in Sec.3.5.

2.2 CHEMICAL KINETICS OF THE
H2O − CO2 − CaCO3 SYSTEM

So far we discussed the chemical pathways of karst waters with respect to
Ca2+ and CO2. The question remains, how fast do the solutions ”move”
along these pathways in karst environments.

The knowledge of the chemical kinetics of limestone is crucial to gauge
the models presented in the following sections. How fast CaCO3 is removed
from the surface of the mineral depends on three mutually-operating rate
controlling mechanisms:

• The surface reaction, which depends on the chemical composition of the
solution at the mineral surface and on the concentration of impurities in
the mineral.

• The diffusional flux of ions released from the mineral surface, which de-
pends on the concentration gradient and diffusion constant.

• The conversion of CO2 into HCO−
3 and H+. The process can be rate-

limiting when the ratio between the volume of the solution and and the
reactive surface of the mineral (V/A ratio) is small (Dreybrodt et al.,
1996).

Generally, all three mechanisms have to be considered. On the other
hand the specific settings can favour one or two mechanisms such that these
exhibit much higher rates than the rest. In this case the fast mechanisms
can be excluded and the rates can be calculated by considering only slow
processes. When only one mechanism is slow we say that the rates are
either surface, transport or CO2 controlled.

SURFACE RATES

The surface rates far from equilibrium are well defined by the Plummer-
Wigley-Parkhurst (PWP) equation (Plummer et al., 1978) which relates
the rate to the chemical composition of the solution at the surface.

Close to equilibrium natural limestones exhibit much lower rates than
predicted by the PWP equation. Based on the experimental data of Plum-

2A German expression for mixing corrosion, which is commonly used in literature.
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mer et al., Palmer (1984) showed that the surface rates can be described
by an empirical rate law given by:

Fs(c) =
{

kn1(1 − c/ceq)n1 , c ≤ cs
kn2(1 − c/ceq)n2 , c > cs

(2.8)

where n1 is in the range between 1.5 and 2.2, n2 ≈ 4 and a switch concen-
tration cs ≈ 0.8ceq. This rate law was experimentally verified for natural
calcite by Svensson and Dreybrodt (1992) for the open system and later by
Eisenlohr et al. (1997; 1999; 2000) for the closed system. Eisenlohr et al.
obtained values of n2 between 4 and 11. They also showed that the drop
of the rates with respect to PWP is due to impurities in natural limestones
which accumulate on the surface and inhibit dissolution.

TRANSPORT AND CO2 CONTROLLED DISSOLUTION

To obtain the actual dissolution rate one has to consider the combined
action of surface reaction, diffusion and CO2 conversion. Buhmann and
Dreybrodt (1985a; 1985b) suggested a model for the open and closed sys-
tem with all three processes involved. They assumed the PWP equation
for the surface rates. Their results can be summarised by the following
approximation:

F (c) = α(ceq − c) = k1(1 − c/ceq). (2.9)

The parameter α depends on the temperature, CO2 content of the solution,
the V/A ratio and the type of flow, i.e. laminar or turbulent (refer to (Drey-
brodt, 1988) for more details). Typical values of α are several 10−5 cm/s.
This was also experimentally verified by Dreybrodt et al.(1996).

2.2.1 THE RATE EQUATION USED IN THE MODELS

In the initial stage of the evolution of a karst aquifer, the water is flowing
through fractures with aperture widths between 0.005 cm and 0.1 cm . In
these conditions, the rate determining mechanisms are transport and CO2

control if the concentration is below some switch concentration cs . The
rates follow a linear rate law given by Eq. 2.9. The kinetic constant k1 is
almost constant for aperture widths between 0.005 cm < a < 0.1 cm. For
larger aperture widths rates are increasingly transport controlled and the
rate constant k1 has to be replaced by (Dreybrodt, 1988):

kD = k1

[
1 +

k1a

6Dceq

]−1

. (2.10)
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As the solution approaches equilibrium, the surface rates become rate con-
trolling and the rates follow a non-linear dissolution rate given in Eq.2.8.

Combining Eqs.2.8 and 2.9 one obtains the rate law which will be used
throughout this work:

F (c) =
{

k1(1 − c/ceq) , c ≤ cs
kn(1− c/ceq)n , c > cs

(2.11)

where kn = k1(1−cs/ceq)1−n. Typical values of k1 are a few 10−11 mol/cm2s,
values of n are between 4 and 11. The switch concentration cs is between
0.7 ceq-0.9 ceq. See also Tab.3.1 for the typical parameters used in the fol-
lowing models.
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3 THE EVOLUTION OF A SINGLE
FRACTURE

3.1 EVOLUTION UNDER CONSTANT HEAD
CONDITIONS: THE FEEDBACK MECHANISM AND
BREAKTHROUGH

The evolution of a basic element of a karst aquifer - a single fracture - is
of the utmost importance for understanding the evolution of more complex
structures like fracture networks. The term ”single fracture” in our case
does not only imply straight fractures like that in Fig.3.1; a sequence of
fractures forming a pathway between input and output can also be discussed
in this context (see elements ”1” in Fig.1.3).

This chapter presents the evolution of a single fracture in various set-
tings which are implied in physical and chemical parameters used in the
presented models. Reaction-transport mechanisms in tubes and fractures
are well known and discussed also in the other fields of science (Beek and

Figure 3.1: Uniform fracture with aperture width a0, width b0 and length L. Calcite
aggressive water is driven through it by the time-independent hydraulic head h. The
goal is to calculate how do the aperture widths and flow rates evolve in time due to the
dissolutional widening.
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Mutzall, 1975; Bird et al., 1960). Weyl (1958) was the first who applied
them to the fractures and tubes in calcite. His experiments and those of
Erga and Terjesen (1956) revealed a linear rate law for calcite dissolution
in CO2−H2O−CaCO3 solutions. These results caused some trouble to re-
searchers as discussed by White and Longyear (1992), since large conduits
in the natural hydrogeochemical conditions do not evolve in geologically
relevant timescales if only linear kinetics is operative. Non-linear rate laws
as pointed out by White (1977) and Palmer (1984) were first introduced
into the model of single fracture evolution by Dreybrodt (1988; 1990) and
Palmer (1991). A detailed mathematical analysis of the problem was later
done by Dreybrodt (1996) and Dreybrodt and Gabrovšek (2000).

3.1.1 BASIC RELATIONS AND NUMERICAL RESULTS

This section presents the basic mechanisms acting when water driven by
a time-independent hydraulic head h flows through an initially uniform
fracture in soluble rock . The scenario is shown in Fig.3.1.

The flow rate Q[cm3/s] depends on the flow resistance R and on the
hydraulic head h. The resistance is a function of the fracture aperture width
a, fracture width b, fracture length L and the dynamic viscosity of the water
η/ρ (η is viscosity in g/cms and ρ is the density in g/cm3). For laminar
flow, the flow rate through the fracture is given by the Hagen-Poisseuille
equation (Beek and Mutzall, 1975),

Q = h/R = iL/R, (3.1)

where i is hydraulic gradient defined as h/L and

R =
12η
ρg

∫ L

0

dx

a3(x, t)b(x, t)M(x, t)
. (3.2)

M is geometrical factor and depends on the value a/b:

M = 0.6− 0.3a/b elipsoidal shape, (3.3)
M = 1− 0.6a/b rectangular shape. (3.4)

This would be the end of the story if the system were non-reactive. The
CO2 containing water is aggressive with respect to the karst rocks, therefore
it widens the fracture by dissolving limestone from the walls.

The widening rate at any point in fracture is proportional to the dis-
solution rate there. This is given by Eq.2.11 and depends on the under-
saturation of the solution. Therefore we need to know the concentration
of calcium ions along fracture to calculate its widening in time and space.
This can be calculated by coupling the flow and dissolution rates by the
mass conservation law. It requires that the amount of calcite dissolved from
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x x+dx
Figure 3.2: Mass conservation in the part of the fracture between x and x + dx.

the walls within any part of the fracture (e.g. x and x + dx) is equal to
the difference between the amount of calcium leaving out and the amount
of calcium entering the selected part (c.f. Fig 3.2). Writing this down we
obtain

F (c(x))P (x) dx = v(x)A(x) dc = Qdc. (3.5)

v(x) is the velocity of the solution at the position x and A(x) the cross-
section of the fracture there. In the integral form, taking c(x = 0) = c0, we
get:

Q

∫ c(x)

c0

dc

F (c)
=

∫ x

0

P (x) dx. (3.6)

To obtain the dissolution rates along the fracture we have to solve
Eqs.3.5 or 3.6. The aperture width a(x, T ) at some position x at time
T is given by the time integral of the dissolution rate:

a(x, T ) = 2γ
∫ T

0

F (x, t) dt + a0. (3.7)

F (x, t) is obtained from Eq.3.6 and the factor γ (value of γ for the limestone
is 1.7 · 109) converts the dissolution rates from mol/cm2s to the retreat of
the wall in cm/year.

We cannot obtain a general analytical solution of the Eqs.3.5-3.7. To
solve the problem numerically, we discretize time and spatial variables t
and x into suitable ∆t and ∆x increments and do the following procedure:

1. Calculate Q(t) from Eqs. 3.1 and 3.2

2. Calculate F (x) from Eqs. 2.11 and 3.5

3. Calculate the new profile assuming a constant rate in the time interval
∆t according to

a(x, t+ ∆t) = a(x, t) + 2γF (c(x), t)∆t, (3.8)
b(x, t+ ∆t) = b(x, t) + 2γF (c(x), t)∆t.

4. If the flow is laminar go back to step 1. If the flow is turbulent, exit.
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THE RANGE OF THE PARAMETERS RELEVANT FOR NATURAL
KARSTIFICATION

There are two types of parameters defining the evolution of a fracture:
physical parameters and chemical parameters. Chemical parameters were
discussed in Chap.2. Once we define the geochemical settings at the site
of karstification, the values of the chemical parameters can be calculated
from thermodynamical data (ceq) or measured in the laboratory (rate law
and its constants).

Physical parameters depend on the particular hydrogeological setting
in which karstification proceeds. Typical aperture widths of fractures in
nature are in the order of several tenths of a millimetre (Motyka and Wilk,
1984; Wilk et al., 1984). In natural systems hydraulic gradients are usually
smaller than 0.1. Typical lengths of pathways connecting inputs and out-
puts are in the order of several hundred metres to several kilometres. In
man-made hydraulic conditions, such as at dam sites, hydraulic gradients
can be greater than 1 and the lengths of pathways less than 200m.

Although the models of karstification in man-made conditions can be of
great practical importance (Palmer, 1988; Dreybrodt, 1990, 1996; Siemers,
1998), we will focus on the natural karstification. Typical values of param-
eters for natural settings are given in Tab.3.1. This set of parameters will
be used throughout this work and referred as a standard fracture.

DISCRETISATION OF x AND t

As pointed out by Dreybrodt (1996), discretisation of the spatial variable
x has to be done with care. The change of concentration ∆c within the

Name Sign Standard value Units
Initial aperture width a0 0.02 cm
Initial width b0 100 cm
Length L 105 cm
Hydraulic head h 5 · 103 cm
Ca2+ equilibrium concentration ceq 2 · 10−6 mol/cm3

Linear rate constant k1 4 · 10−11 mol/cm2s
Non-linear kinetics order n 4
Non-linear rate constant kn 4 · 10−8 mol/cm2s

Table 3.1: Basic chemical and physical parameters. The ”standard” values relevant for
natural karstification are given in the third column. These values will be used in the
following model runs when not noted otherwise.
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interval ∆x (see Eq.3.5) is given by:

∆c(x, t) =
F (x, t)P (x, t)

Q(t)
∆x. (3.9)

When taking constant ∆x increments, ∆c increments are large at the en-
trance and then decrease rapidly.

At the entrance of the ”standard” fracture (see Tab.3.1) ∆c(x=0)[µmol/cm3] ≈
0.003·∆x. In this case the solution would already attain equilibrium within
the first ∆x if ∆x > 60 cm. To avoid such a numerical saturation one has
to use sufficiently small ∆x increments. It is more convenient to use fixed
∆c increments and calculate suitable ∆x. We will use ∆c = cs/i1 for c < cs
and ∆c = (ceq − cs)/i2 for c > cs. Parameters i1 and i2 are in the order
of 100 − 1000. Note that in this case ∆x varies in time which has to be
considered in a numerical algorithm. See also (Dreybrodt, 1996) for more
details.

Time discretisation is done so, that a further decrease of ∆t increments
does not considerably affect the time scale of the evolution. Time incre-
ments can be either fixed or they can be calculated for each time step such
that the maximal widening rate does not exceed some prescribed value.

NUMERICAL RESULTS FOR ”STANDARD” FRACTURE

Fig. 3.3 shows the numerical results for the evolution of the standard frac-
ture (Tab.3.1). Initially, the increase of flow rate is slow. High dissolution
rates are restricted close to the entrance of the fracture. There the dissolu-
tion rates are linear and (we will show this later) drop exponentially with
distance x. At some point xs, the switch concentration cs is reached and
from there on the dissolution rates follow a non-linear relation and drop
hyperbolically (this will be also shown later).

The mutual dependence of flow and dissolution rates results in a posi-
tive feedback mechanism; due to the dissolutional widening of the fracture
the flow rate increases, consequently the dissolution rates along the entire
fracture increase and so on, until finally a dramatic increase of flow and
dissolution rates terminates the initial karstifiation state. This can be seen
on Fig.3.3a. This event, called breakthrough, terminates the initial state
of conduit evolution.

The breakthrough time, i.e. the time when breakthrough occurs, can
be defined in several ways:

• When the linear kinetics reaches the exit of the fracture
• At the onset of turbulent flow, according to the Reynolds number
• At the time when the ratio Q(t)/Q(t=0) reaches some value; e.g. 103

All these criteria give similar results for most cases of interest. The
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Figure 3.3: Evolution of a single fracture in time and space: numerical results. a)
Evolution of the flow rate in time. Open circles denote the times when profiles in figures
b,c and d were recorded. b) Evolution of aperture widths. Note the logarithmic scale for
a. c) Evolution of concentration. d) Evolution of dissolution rates. Note the logarithmic
scale for x in figures b and c. Profiles are recorded each time the flow rate doubles.
Parameters used in the model run are given in Tab. 3.1

breakthrough event terminates the initial state of speleogenesis and can
thus be taken as a measure for the intensity of a subsurface karstification.

As time progresses, the region with linear kinetics penetrates deeper into
the fracture. After breakthrough the entire fracture is widened uniformly by
the first order dissolution kinetics. By sensitivity analysis we find that the
dependence of breakthrough time on the basic parameters can be expressed
in the form of power law:

TB = τ · (L/i) n
n−1 · a

−2n+1
n−1

0 · k
1

n−1
n · c

−n
n−1
eq . (3.10)

The value of τ is 9 · 10−14 ± 10−14 for square and circular cross-sections,
and about an order of magnitude smaller for wide fractures, i.e. b0 � a0

(Dreybrodt, 1996). Error is less than 15% for TB > 104 years.
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3.1.2 AN ANALYTICAL APPROXIMATION FOR THE

BREAKTHROUGH TIME

Fig.3.3 shows that during 90% of the evolution time, fast dissolution rates
are restricted only close to the entrance. The rest of the fracture is widened
almost uniformly by slow dissolution rates, not much higher than that at
the exit. This enables an approximation which assumes that the dissolution
rates along the fracture are constant and equal to that at the exit. Explicitly
the approximation yields:

a(x, t) = a(L, t), (3.11)
F (x, t) = F (L, t). (3.12)

Fig.3.4 illustrates this approximation. The evolving funnel shape of the
fracture is neglected and the fracture is kept parallel during the evolution.
For the uniform fracture Eq.3.6 can be solved analytically.

a

Numerical

Analytical

Figure 3.4: The evolving funnel shaped fracture is approximated by a fracture of uniform
width widened evenly by the dissolution rates at the fracture’s end. This enables an
analytical treatment of its evolution.

To obtain the concentrations c(x) and rates F (x) for the uniform frac-
ture, we insert the expressions for the dissolution rate (Eq.2.11) into Eq.3.6
and obtain:

1
k1

∫ c<cs

c0

dc

1− c(x)/ceq
=

∫ x

0

P

Q
dx, x ≤ xs, (3.13)

1
kn

∫ c(x)

cs

dc

(1 − c(x)/ceq)n
=

∫ x

xs

P

Q
dx, x > xs. (3.14)

Integrating 1 the upper equations we obtain:

1− c(x)/ceq = (1− c0/ceq) exp
(
−Pk1x

Qceq

)
, x ≤ xs, (3.15)

(1 − c(x)/ceq)
−n+1 = (1 − cs/ceq)

−n+1 +
Pkn(n− 1)(x− xs)

Qceq
, x > xs. (3.16)

1The integrals are basic integrals of power functions
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Inserting x = xs and c(x) = cs in Eq.3.15 we get:

xs =
Qceq
Pk1

ln
(

1 − c0/ceq
1− cs/ceq

)
. (3.17)

Using Eq.2.11 we write the term (1−c(x)/ceq) as a function of F (x) and
reorder the upper expressions to obtain the explicit form for the dissolution
rates:

F (x) = F (x = 0) exp
(
− Pk1

Qceq
x

)
, x ≤ xs, (3.18)

F (x) = F (xs)
[
1 +

Pkn(n− 1)(x− xs)
Qceq(1 − cs/ceq)1−n

]n/1−n

, x > xs. (3.19)

More generally, if the rate at some point x1 is known and the non-linear
rate law with constant ceq, kn and n describes the dissolution between the
point x1 and some other arbitrary point x2, the rate at x2 is given by

F (x2) = F (x1)
[
1 +

Pkn(n− 1)(x2 − x1)
Qceq(1 − c(x1)/ceq)1−n

]n/1−n

, (3.20)

for x2 > x1.

The problem is further simplified by taking a wide fracture, i.e. b � a. In
this case
a + b

a3b
≈ 1

a3
so that P/Q =

24η
ρg

L

a3h
. (3.21)

For more transparency we define new parameters λ1 and λn(x) with the
dimension of length

λ1 =
Qceq
Pk1

, (3.22)

λ1 =
ρg

24η
a3h

L

ceq
k1

, b � a, (3.23)

λn(x) =
Qceq(1 − c(x)/ceq)1−n

Pkn(n− 1)
, (3.24)

λn(x) =
ρg

24η
a3h

L

ceq(1 − c(x)/ceq)1−n

kn(n− 1)
, b � a. (3.25)

Note that λn(xs) = λ1/(n− 1) since kn = k1(1 − cs/ceq)1−n. Eqs.3.18-3.20
now take the forms:

F (x) = F (0) exp
(
− x

λ1

)
, x ≤ xs, (3.26)

F (x) = F (xs)
[
1 +

x− xs
λn(xs)

] n
1−n

, x > xs, (3.27)

F (x2) = F (x1)
[
1 +

x2 − x1

λn(x1)

] n
1−n

, x2 > x1 > xs. (3.28)
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These equations will be the ”bread and butter” for the later discussions.
Parameters λ1 and λn(x) define how fast the dissolution rates decrease
along the fracture or how far first order dissolution rates penetrate into
the fracture. The expression penetration lengths will be used to refer to
them. For non-linear kinetics, the penetration length λn(x) increases along
the fracture due to increasing concentration. This is not the case for λ1

which does not depend on the x coordinate.
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Figure 3.5: a) Dependence of penetration lengths λn (solid lines) and λ1 (dashed line) on
Q. λn is shown for various values of c/ceq as denoted at the lines. The dotted line shows
the aperture width for the uniform ”standard” fracture (see Tab.3.1) which corresponds
to the values of Q at the abscissa. b) Dissolution rates along the uniform ”standard”
fracture for various order n of the rate equation as denoted in the figure.

Fig.3.5a gives the dependence of λn on the flow rate for various values
of saturation ratios c/ceq (given in the figure). The dashed line gives the
dependence of λ1. This does not depend on c/ceq. The dotted line presents
the aperture widths corresponding to the flow rate Q for the uniform frac-
ture. Other parameters are those given in Tab.3.1.

Figure 3.5b shows the dissolution rates along the uniform fracture. The
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solid lines present the case where only linear kinetics acts along the fracture.
The other lines (see figure) present the cases where the rate law switches
higher order at c > cs. The ”standard” fracture parameters given in Tab.3.1
were used to calculate the rates, except for the varying parameters n and
kn. If only linear kinetics acts, the rates drop exponentially and are reduced
by 13 orders of magnitude within a short distance. In contrast when non-
linear kinetics is active the rates are reduced only moderately by about 3
orders of magnitude .

In our approximation we have assumed a plane parallel uniform frac-
ture (a0 	 b0), widened uniformly by the rate at its exit. Its widening is
described by:

da

dt
= 2γF (L, t). (3.29)

where F (L, T ) is given in Eq.3.27. For natural karstification the relations
L � xs and L/λn(xs) � 1 are valid. This can be verified by Eqs.3.17 and
3.25 and also be seen on Fig.3.5. Therefore we neglect the terms ”1” and
xs in Eq.3.27.

For a uniform fracture the time dependence of λn(xs) can be written as

λn(xs, t) = λ0
n(xs)

(
a(t)
a0

)3

. (3.30)

We introduce λ0
n(xs) to denote λn(xs, t = 0). Inserting λn(xs, t) into Eq.3.27

we obtain:

F (L, t) = F (cs)
[

L

λ0
n(xs)

a3
0

a(t)3

] −n
n−1

. (3.31)

Applying the obtained F (L, t) in Eq.3.29 gives an easy integrable widening
equation:

da

dt
= 2γF (cs)

(
λ0
n(xs)
L

) n
n−1

(
a(t)
a0

) 3n
n−1

. (3.32)

The widening rate is proportional to the power 3n/(n−1) of the actual
aperture width. This explains the strong feedback mechanism seen in the
numerical results. The integral of Eq.3.32 gives the time dependence of the
aperture width:

a(t) = a0 (1 − t/TB)
1−n
2n+1 , (3.33)

where

TB =
1
γ
· n− 1
2n + 1

(
1
a0

) 2n+1
n−1

(
24ηL2(n− 1)

ρghceq

) n
n−1

k
1

n−1
n (3.34)

=
1
2γ

(n− 1)
(2n + 1)

a0

F (L, 0)
.
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TB is the pole of a(t) and represents an estimation for the breakthrough
time. It is inversely proportional to the inital widening rate at the exit.
It has the same functional dependence on the basic parameters as the nu-
merically obtained expression for TB given in Eq.3.10. In the following
chapters additional parameters will be added to the model. Then the the
symbol T 0

B will be used to refer to the breakthrough time given in Eq.3.34.
Fig.3.6a shows the evolution of fracture aperture widths as calculated from
the Eq.3.33. Note, that the TB given in Eq.3.34 is an upper limit, since
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Figure 3.6: a) Evolution of fracture aperture width at the exit as given by Eq.3.33. The
dotted vertical line represents the pole of the function a(t). b) Dependence of break-
through time on a0 for otherwise standard fracture. The upper line gives the TB from
Eq.3.34, the lower line is obtained by the finite difference model. The dotted line gives
the value of λ0

n(xs). Note the logarithmic scale on both axes. Analytical approximation
and numerical solution follow the same power law for a0 < 0.06 cm. The assumptions
which lead to the approximation fail at higher a0 and higher initial penetration lengths.
Then the both curves start to deviate from each other.

the minimal rates were taken along the entire fracture to calculate its evo-
lution. This is shown on Fig.3.6b. The upper solid line represents Eq.3.34,
the lower one the results of a numerical run. The initial width is varied
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between 0.01 cm and 0.1 cm, all the other parameters are kept constant
(see Tab.3.1). Up to a0 ≈ 0.06 cm, the ratio between the analytically
and numerically obtained breakthrough times is practically constant. For
a0 > 0.06 cm the numerical breakthrough behaviour starts to deviate from
the power law ant the approximation fails. There the assumptions L � xs
and L � λ0

n(xs) are no longer valid.
The dashed line and the scale at the right vertical axis show the initial

λ0
n(xs). Using Eq.3.25, the variation of any parameter can be expressed as

the variation of λ0
n(xs) . It shows out that regardless of which parameter

we vary, the approximation given in Eq.3.34 fails if L/λ0
n(xs) < 100.

AN IMPORTANT CONCLUSION

The keystone of the presented approximation is that the breakthrough time
is determined by the initial dissolution rates at the ”bottleneck” part where
the resistance to flow is maximal and the dissolution rates are minimal.
Here the bottleneck is at the fracture’s end. When hydrogeochemical con-
ditions favour the formation of bottleneck somewhere else in the fracture
one should focus on the initial rates there to estimate the behaviour of the
breakthrough time. We will benefit from this fact also when adding further
parameters to the basic settings presented in this chapter.

3.1.3 SOLUTIONS WITH HIGH INITIAL SATURATION

RATIOS. ”SWITCH OFF” OF THE FEEDBACK

MECHANISM

Before entering the closed system, karst water normally dissolves limestone
under open system conditions. Therefore it enters the fractures with the
saturation ratio c0/ceq > 0. The question is how does this affect the evolu-
tion of a single fracture.

Fig.3.7a shows the evolution of flow rates for the standard fracture for
several ratios c0/ceq as denoted in the figure. Flow rates beyond turbulence,
i.e. above the dotted line, are unrealistic and are given for completeness
and support to the later discussion. As long as the initial concentration is
below the switch concentration (lines 1-4), no considerable change of TB
is observed. Line 4 shows the case when c0 = cs. If c0 is higher than cs,
TB starts to increase and as c0 approaches ceq (lines 6-8) breakthrough no
longer occurs in the sense of an abrupt jump in flow rates. In these cases
the fracture widens uniformly in time from the onset of karstification.

A more general picture of the behaviour of TB on c0/ceq is given in
Fig.3.7b. The solid line denotes the dependence of TB on c0/ceq. The
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Figure 3.7: a) The evolution of flow rate in standard fracture for various values of
c0/ceq as denoted in figure. b) The dependence of breakthrough time (solid line) and
parameter L/λn(x = 0, t = 0) (dashed line) on c0/ceq. Arrow indicates the value of cs.
No considerable change is observed if c0/ceq < 0.97.

dashed line shows the dependence of L/λ0
n(x = 0) on c/ceq, both for the

standard fracture. The same scale is used for both variables. As stated
above, no effect on TB is observed if c0 < cs. A considerable increase of TB
is observed once the ratio L/λ0

n drops to 10, where c0/ceq ≈ 0.97. From
thereon TB increases steeply. No breakthrough occurs if L/λ0

n < 0.1.
The feedback mechanism is active as long as L/λn(0, t) � 1. Once this

ratio becomes close or even smaller than one the dissolution rates along the
entire fracture are almost equal to that at the entrance (see Eq.3.27). The
entire fracture is then widened linearly in time as shown by Fig.3.7a. For
very high initial saturation ratio (curves 7 and 8 on Fig.3.7a) this happens
already at the onset of widening.

The presented discussion is not only valid for fractures dissolved by au-
togenic waters flowing from the surface, but also holds for fractures situated
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deep in the phreatic zone where the parameter λ0
n(x = 0) can take a value

of several kilometres and even widening in the order of 10−9 cm/year can
enlarge these fractures in a time scale of several millions of years. When
the hydrogeological conditions change, these fractures can become prefer-
ential pathways for later karstification. This can provide an explanation
for the concept of inception horizons, without assuming other mechanisms
as discussed by Lowe (1997).

3.1.4 EVOLUTION OF A SINGLE FRACTURE UNDER

LINEAR DISSOLUTION KINETICS

We stressed the importance of the higher order (n > 1) dissolution kinetics
for the conduit development. The non-linear rate equation close to equi-
librium is valid for natural limestones and dolomites and according to the
latest results (Jeschke et al., 2000) also for gypsum. Nevertheless, for his-
torical reasons, for completeness, and for ”what if ?” we will discuss the
conduit evolution under the action of linear dissolution kinetics only. We
therefore assume that the linear part of of Eq.2.11 is valid until ceq:

F (c) = k(1 − c/ceq). (3.35)

So far we did not consider the diffusion control of dissolution rates.
Numerical results show that for karstification with a non-linear rate law,
diffusion plays a minor role and does not much alter the breakthrough time.
In contrary we will see that for the case with linear kinetics diffusion plays
a crucial role.

Now we consider the combined action of surface reaction and diffusional
transport of dissolved ionic species. As shown by Buhman and Dreybrodt
(1985a; 1985b; 1988) this can be done by using a modified rate constant
which yields:

k = kD = k1

[
1 +

k1a

6Dceq

]−1

. (3.36)

From this equation one can deduce three regions of dissolution.
If k1a/6Dceq 	 1 we obtain k ≈ k1, such that the dissolution is purely
surface controlled. The dissolution is purely diffusion controlled when
k1a/6Dceq � 1. Between the two extremes is the region where the dis-
solution is controlled by both (mixed kinetics). Suppose that the diffusion
is not important for the evolution of a fracture, so that k = k1. Fig.3.8a
shows the evolution of flow rates for two fractures with different hydraulic
gradients. All the other parameters are the same for both cases (see the
figure caption). TB for i = 0.25 is 1.2 ky and there is no breakthrough
for i = 0.2. Fig.3.8b shows dependence of TB on λ0

1/L (see Eq.3.23). The
full line denotes the case where λ0

1 is varied by varying a0 and keeping the
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Figure 3.8: a) Evolution of the flow rate for the case of linear kinetics when only surface
rates are considered. a0 = 0.02cm, b0 = 100cm, L = 104cm, k1 = 4 · 10−11mol/cm2s,
ceq = 2 · 10−6mol/cm3, i = 0.2 and i = 0.25 as denoted at the lines. b) The dependence
of TB on λ0

1/L. This is varied by varying a0, k1 and i presented by the solid, dashed and
dotted lines respectively. Other parameters are the same as in figure a.

other parameters constant. The dashed and dotted lines present the cases
where k1 and i are the varying parameters. There is a sharp limit between
the region of parameters where breakthrough occurs and the region without
breakthrough. All three curves show the same behaviour. Therefore we can
take λ0

1/L as a master parameter determining the breakthrough behaviour.
Now we include diffusion by using Eq.3.36 as the rate equation. Fig.3.9

presents the evolution of flow rates for the same fracture as in Fig.3.8a
but with diffusion included. Now the breakthrough time for i = 0.2 is
below 1 ky. As shown by Fig.3.8b, there is no sharp boundary dividing
the region of parameters with and without breakthrough. In this case we
obtain geologically relevant breakthrough times for much smaller values of
λ0

1/L.
Another example is shown on Fig.3.10a, which gives a wide range depen-

dence of TB on k1 for the cases with k = k1 and k = kD. Other parameters
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Figure 3.9: a) Evolution of the flow rate for the case of linear kinetics. Diffusion is
included in the rate equation. Parameters are the same as in Fig.3.8. b) The dependence
of TB on λ0

1/L. See also Fig.3.8b

are the same as in Fig.3.8. As long as k1 < 8 · 10−12, the surface reaction
determines the rates and the both cases coincide. For larger values of k1

no breakthrough occurs if only surface rates are considered.
The question arises whether we can treat the problem with the approx-

imation for the widening rate at the exit. From Eq.3.26 we get the exit
dissolution rate. Introducing it into Eq.3.29 we obtain:

da

dt
= 2γk1 exp

(
− La3

0

λ0
1a

3

)
. (3.37)

If the rates are mixed controlled we obtain:

da

dt
= 2γ

k1

1 + k1a
6Dceq

exp


− La3

0

λ0
1a

3
(
1 + k1a

6Dceq

)

 . (3.38)

The results of the integration are given in Fig.3.10b. TB rises beyond any
relevant value at higher values of λ0

1/L than in Fig.3.8b. However it does
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not show the asymptotic behaviour for λ0
1/L > 0. There is practically

no difference between case with and without diffusion, since the aperture
width at the exit is small. Therefore the difference between Eqs.3.37 and
3.38 is negliable. We see that the approximation with the exit rate does not
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Figure 3.10: a)The dependence of TB on k1. The other parameters are as in Fig.3.8.
The solid line presents the case when only surface controlled rates were included to the
model, dashed line give the case where diffusion is considered. b) TB dependence on
λ0

1/L obtained by solving Eqs.3.37 and 3.38.

explain the difference observed in numerical runs. To explain this difference
we have to focus on the entrance part of the fracture. Fig.3.11a shows the
evolution of aperture widths for the case with i = 0.2 from Fig.3.8a. The
small graph shows the aperture widths in the first 10m of the fracture. This
part exhibits extremely high aperture widths. Then the aperture widths
drop fast such that more than half of the fracture keeps its initial flow
resistance. High apertures at the entrance and almost constant resistance
of the rest of the fracture cause the decrease of dissolution rates in time. For
more on this see the discussion in (Dreybrodt, 1996) and in the following
section.
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Fig.3.11b shows the aperture widths if the diffusion is included in the rate
calculation. Diffusion becomes rate limiting once the aperture widths are
large (see Eq.3.36). For mixed control, the penetration length can be writ-
ten as

λD = λ1

(
1 +

k1a

6Dceq

)
. (3.39)

Since λM > λ1 widening progresses deeper into the fracture. Furthermore,
the diffusion prevents the uncontrolled widening at the entrance which
causes the retreat of dissolution rates if only surface rates are assumed.
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Figure 3.11: a) The profiles of the aperture widths for the case with i = 0.2 from Fig.
3.8. Only surface rates are considered. The excerpt shows the entrance part, x < 500cm.
b) Same as in the figure a, but diffusion is considered. Profiles are taken each 100y,
starting at 50y.
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3.1.5 THE DIFFERENCE BETWEEN THE EVOLUTION

OF DISSOLUTION RATES IN WIDE FRACTURES AND

IN TUBES

We have discussed only the evolution of wide fractures. This enabled us
to obtain analytical results due to the approximation given in Eq.3.21.
Although the obtained results are conceptionally valid also for the tubes,
one should be aware of an important difference between the two cases.

To clarify this difference we consider the dissolution rates along a frac-
ture of general shape. This can be obtained the same way as for the parallel
fracture, except that the right hand side of Eq.3.6 is left in the integral form
:

F (x, t) = F (x = 0) exp

(
−

k1

∫ xs

0
P (x, t) dx

Q(t)ceq

)
, x < xs (3.40)

F (x, t) = F (xs)

[
1 +

kn(n − 1)
∫ x

xs
P (x, t) dx

Q(t)ceq(1 − cs/ceq)1−n

] n
1−n

, x > xs (3.41)

The ratio
∫ x

0 P (x, t)/Q(t)dx includes the whole time dependence. There-
fore it determines whether the dissolution rates along the fracture increase
or decrease in time. If the ratio increases, the rate decreases and vice versa.

In wide fractures the relative change of perimeter in time is small, such
that the dissolution rates increase in time with increasing flow rate.

This is not always true for tubes. In this case the time variation of
perimeter and its integral along the fracture might exceed the time variation
of flow rate. This is particularly important at the entrance of the fracture,
where dissolution rates are high and fast widening occurs. As shown, if
linear kinetics with surface controlled rates is assumed this might prevent
the breakthrough also for the initially wide fractures (a0/b0 = 0.01).

3.1.6 SOME GENERAL CONCLUSIONS ON THE

EVOLUTION OF A SINGLE FRACTURE

We have calculated the evolution of a single fracture by combining the basic
flow equations, the knowledge on dissolution rates and the mass conserva-
tion law for the dissolved ionic species. The evolution is determined by
chemical and physical parameters which define the flow through the frac-
ture and dissolution rates along it. These parameters are given in Tab.3.1.

The evolution of a fracture is governed by a feed-back mechanism where
an increase of flow rates causes an increase of dissolution rates and vice
versa. This mechanism ends in an abrupt jump of flow and dissolution
rates, termed as breakthrough. The breakthrough time can be expressed
as a function of basic chemical and physical parameters (Eq.3.34). The
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dependence of breakthrough time on these parameters follows the power
law. Once the breakthrough occurs and turbulent flow sets in, the fracture
is widened evenly with high dissolution rates.

The problem of the evolution of a single fracture is normally handled
numerically. We presented an analytical approximation which gives the
right dependence of breakthrough time on the basic parameters. The ap-
proximation assumes an even widening of the fracture with the dissolution
rates at the exit.

The initial saturation ratio c0/ceq does not affect the feedback mecha-
nism if the initial concentration is below the switch concentration. If the
ratio c0/ceq is close to 1, i.e. c0/ceq > 0.97, the evolution is significantly
affected and the feedback mechanism is switched off.

If only a linear rate law is assumed, one must consider the diffusional
flux of dissolved ionic species as a rate controlling mechanism. If only
surface controlled rates are assumed we observe a sharp boundary between
the region of parameters where the breakthrough occurs and the region
with no breakthrough. This might lead to wrong conclusions.

3.1.7 A TIME VARIATION OF THE HYDRAULIC HEAD

In nature the boundary conditions and the parameters defining karstifi-
cation change during karst evolution. For reasons of clarity, most of the
discussion in this work does not assume any time variation of the parame-
ters given in Tab.3.1.

To get some insight into scenarios with time-varying parameters we
present the case with a time dependent hydraulic head. One can envisage
many scenarios where the hydraulic head changes: e.g. the downcutting of
an erosional base, the change of precipitation rate or the change of hydraulic
properties of an aquifer.

We assume some explicit time dependence of the hydraulic head h =
h(t). To obtain the breakthrough behaviour we can apply the same pro-
cedure as for the constant head conditions (Eqs.3.30-3.33). If the head
variation is explicitly known it can be included into Eqs.3.30, 3.29 and
3.33. This gives the following relations:

λn(xs, t) = λ0
n(xs)

(
a(t)
a0

)3 (
h(t)
h0

)
, (3.42)

da

dt
= 2γF (L, t) = 2γF (cs) ·

(
λ0
n(xs)
L

) n
n−1

·
(
a(t)
a0

) 3n
n−1

·
(
h(t)
h0

) n
n−1

(3.43)

and

a(t) = a0

(
1 −H(t)/T 0

B

) 1−n
2n+1 , (3.44)

44



p

A single fracture:basic settings

where H(t) = h
n

1−n

0

∫ t

0

h(t)
n

n−1 dt . (3.45)

T 0
B is the breakthrough time as given in Eq.3.34 for the non-varying hy-

draulic head h0 = h(t = 0). Breakthrough time is obtained from the
condition for the pole of the function a(t) which yields:

h
n/n−1
0 T 0

B =
∫ TB

0

h(t)n/n−1 dt. (3.46)

The hydraulic head can increase or decrease in time. Depending on the
particular situation various forms of its time-dependence can be assumed.
As an example we assume a simple case where the hydraulic head drops
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Figure 3.12: Dependence of TB/T
0
B on τ/T 0

B in the case where the hydraulic head drops
exponentially with time constant τ . The solid line represents Eq.3.47, the dashed one
the results of finite differences model. The parameters for standard fracture are used.
The vertical dashed line divides the regions of τ with and without breakthrough.

exponentially in time as h = h0 exp(−t/τ). We take this dependence for
didactical reasons because it gives clear-cut results which can be easily
obtained and interpreted. Integrating Eq.3.46 using this dependence and a
bit of reordering gives:

TB = T
n− 1
n

ln


 1

1 − T 0
B
n

τ(n−1)


 . (3.47)

The solid line in Fig.3.12 shows the dependence of TB/T 0
B on τ/T 0

B as given
by Eq.3.47, the dashed line the dependence calculated by the finite differ-
ences model. The vertical dashed line divides the regions of breakthrough
and no breakthrough. The condition for the breakthrough is τ > n

n−1
T 0
B.

When assuming a time dependence of other parameters, a similar treat-
ment can be done. One has to bear in mind that these parameters are time
dependent when karstification proceeds in nature and that further work on
this topic is needed.
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3.2 THE INFLUENCE OF FRACTURE ROUGHNESS
ON KARSTIFICATION TIMES

Natural fractures exhibit various degrees of roughness. This section inves-
tigates the influence of fracture roughness on the breakthrough time of the
karst conduits. First estimations on the influence of roughness on cave evo-
lution were performed by Groves and Howard (1994a) on two-dimensional
fracture network. They replaced the uniform aperture widths of the initial
pathways by statistically distributed apertures and found breakthrough be-
haviour similar to that in smooth fractures. A more realistic approach is
that of Hanna and Rajaram (1998) who performed simulations on a single
two dimensional fracture with statistically distributed aperture width. We
will discuss this model at the end of this section.
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Figure 3.13: a) Geometry of an ideally rough fracture with a saw-toothed upper plane.
r is the roughness amplitude. Initial relative roughness is r/2a0. b) The factor fr which
represents the effect of roughness on the flow rate, as a function of relative roughness
r/2a for α = 35◦.

Using statistically distributed aperture widths along a single onedimen-
sional fracture we have found that the breakthrough times do not change
significantly provided that the standard deviation does not exceed 0.3a0.
If σ however becomes close to a0 it is highly probable that the fracture be-
comes blocked and its flow resistance becomes high enough to increase the
breakthrough time dramatically. This approach needs many calculations
with different distributions of initial aperture widths, and is thus not well
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suited. It is also inconvenient for yielding clear-cut results on the influence
of roughness to breakthrough times.

A more convenient approximation can be taken by replacing an irregular
roughness by a regular one, which allows us to calculate the hydrodynamic
resistance analytically. This was done recently by Ge (1997). He investi-
gated the validity of the cubic law, i.e. the dependence of the flow rate on
the third power of the average fracture width a, for a general wide (b � a)
rough fracture . He gives analytical results for a fracture consisting of one
confining ideal plane and the other plane shaped by periodical triangles, as
is illustrated in Fig. 3.13a.

Ge (1997) showed that the flow rate for such a fracture can be expressed
as

Qr = fr ·Qs, (3.48)

where Qs is the flow rate of the smooth fracture with aperture a, given by:

Qs =
ρg

12η
a3 · dh

dx
. (3.49)

The factor fr is a function of the relative roughness r/2a:

fr (r/2a)=
(
2

r/2a
1− r/2a

+ 1
)2

·
(

r/2a
1− r/2a

)−4

· Φ(α). (3.50)

The parameter α is the angle of inclination as depicted in Fig.3.13a.
Φ(α) is a function of this angle (See Ge (1997)). Note from Fig.3.13a that
α → 0 if r → 0, such that Φ(α) → 1 (See Ge (1997)). If 30o < α < 60o
then Φ(α) varies between 0.7 and 0.9. In our calculations we used α = 35o
where Φ(α) ≈ 0.84.

The factor fr is a measure of the flow reduction due to the roughness
of the fracture. For a completely rough surface when r/2a = 1, fr becomes
zero since the fracture is blocked to flow. Fig. 3.13b depicts fr as a function
of r/2a.

The roughness factor can be easily incorporated into the algorithm for
single fracture evolution. Again, a typical breakthrough behaviour (e.g. as
that in Fig.3.3) is observed in all cases, but the breakthrough time increases
with relative roughness.

The breakthrough curves for various degrees of roughness are shown
on Fig.3.14a. Fig.3.14b presents the ratio between the breakthrough times
of the rough and the corresponding smooth fracture2 versus initial relative
roughness.

Results of the finite difference model are presented by the symbols. Var-
ious symbols denote various initial aperture widths and lengths as denoted
in the figure. Curves present approximations which we discuss latter.

2T s
B is equal to T 0

B as given in Sec.3.1. In this section we use superscripts s and r to denote
smooth or rough fractures, respectively.
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Figure 3.14: a) Breakthrough curves for the rough fractures with various degrees of
roughness: r/2a0 = 0, 0.166, 0.333, 0.5, 0.583, 0.66, 0.833, 0.875, 0.916 from left to right
respectively. α = 35◦, L = 4·105, a0 = 0.03 cm, other parameters as for standard fracture
(see Tab.3.1) b) Dependence of the ratio between breakthrough time of rough fracture
with the initial relative roughness r/2a0 and initially smooth fracture. The symbols
represent results of the finite difference model for various initial widths and lengths. The
full line shows the result obtained by integrating Eq.3.29 using Eq.3.51 for the exit rates.
The dotted line represents the crude approximation given by Eq.3.52.

In the calculations the following assumptions are made:

• The roughness amplitude r is maintained during the dissolutional widen-
ing.

• Only the widths a(x) change by dissolutional widening.

During the evolution of the conduit the roughness r/2a decreases con-
tinuously and the correction factor fr looses its influence. Once r/2a has
decreased to 0.2, which still is significant, the fracture develops almost like
a smooth one. However, to get the upper estimation for the breakthrough
time of the rough fracture, we assume that the relative roughness (r/2a)
is kept constant. We justify this assumption by the fact, that the aperture
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width at the bottleneck is widened only a few times until breakthrough.
To obtain the exit dissolution rate for the rough fracture we insert Eq.3.48
into Eq.3.19:

Fr(L) = F (xs)
[
LPkn(n− 1)(1 − cs/ceq)n−1

frQs

] n
1−n

= Fs(L) · f
n

n−1
r . (3.51)

As in Sec.3.1 we neglected terms xs and 1 in expression for dissolution
rates. Fs(L) denotes the exit dissolution rate for the corresponding smooth
fracture. Inserting the obtained rate into Eq.3.34 we get an estimation for
the breakthrough time:

T r
B = T s

B · f
−n

n−1
r . (3.52)

This is depicted by the dotted line in Fig.3.14.
To improve the analytical result, we consider the decrease of relative

roughness in time . Including the widening rate from Eq3.51 into Eq.3.29 we
get an integral for the T r

B, which has to be solved numerically. The results
obtained are presented by the full line in Fig.3.14b. The ratio T r

B/T
s
B is in

complete accordance with the results of the finite difference model. As can
be seen from Fig. 3.14b extreme roughness is necessary to exert significant
influence to the breakthrough times.

It is difficult to estimate the roughness factor for natural fractures,
which exhibit roughness on both confining sides. Nevertheless the idealized
rough fracture as depicted by Fig.3.13 can be regarded as a first approach,
and it is reasonable to generalize the result in the following way. As long as
the initial ratio Qr

0/Q
s
0 ≥ 0.3 the influence of roughness does not increase

the TB for more than a factor of 2. To increase the breakthrough time by
one order of magnitude, a Qr

0/Q
s
0 = 0.02 is needed. Therefore an extreme

roughness is necessary for a drastic change and it seems that in most natural
cases its influence is not very significant. Although this result might appear
qualitative it gives a first estimation on the reliability of smooth fracture
models of conduit evolution. Eqs.3.51 and 3.52 can be generally applied for
any type of roughness provided that the function fr is known.

It is more realistic to consider the fracture as a two-dimensional medium.
This was done by Hanna and Rayaram (1998). Their results seem to be in
conflict with ours, since they obtained that the breakthrough time decreases
with roughness.

In rough two-dimensional fractures flow is channelled along the path-
ways (Tsang and Tsang, 1989) which exhibit lowest flow resistance. These
channels are preferential for the breakthrough. Suppose that the rough-
ness is varied in the way that the initial flow rate through the fracture is
kept constant (Hanna and Rajaram, 1998). Then the flow velocities along
the preferential channels increase with the roughness. Also the lengths of
these channels increase with the roughness. With respect to the widening
rates these two effects oppose each other. Still the effect of flow velocities
is stronger so that the breakthrough time is decreasing with roughness.
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3.3 EVOLUTION OF A SINGLE FRACTURE WITH
VARYING LITHOLOGY

As stated in Chap.2.2, the kinetic order n depends on the type of limestone.
According to Eisenlohr et al. (1999) it takes values between 3 and 11.
The breakthrough time depends on the kinetic order, as can be seen from
Eq.3.34. Fig.3.15a shows this dependence for the standard fracture (see
Tab.3.1).
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Figure 3.15: a) The dependence of the breakthrough time on the order of reaction
for the standard fracture (see Tab.3.1). b) Fracture extending through the boundary
between limestones with different kinetic properties.

Conduits often extend through several limestone formations with dif-
ferent kinetic properties. The concept of a single boundary is shown on
Fig.3.15b. The dissolution rates are governed by the kinetic constant k1

and order n1 for x < KL and k2 and n2 for x ≥ KL.
How such kinetic boundaries do affect the dissolution rates is shown

on Fig.3.16. This graph presents the dependence of the logarithm of dis-
solution rates on the logarithm of undersaturation (1 − c/ceq). The full
line illustrates the chemical evolution of a solution in a setting with two
kinetic boundaries between the orders n = 8 and n = 4. Up to point A
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Figure 3.16: Dissolution rates in system with varying lithology. See text.

(c = cs = 0.9ceq) the linear rate law acts. Then the non-linear rate law with
n = 8 is active until point B. At point B the boundary to the fourth order
kinetics boosts the dissolution rate for two orders of magnitude to point
C. Between points C and D the dissolution proceeds with the fourth order
kinetics. At point D another boundary to the eighth order is faced and the
rates drop down to point E, which is more than two orders of magnitude
lower than point D. Note from the figure, that the closer to saturation the
solution is, the higher is the shift of the dissolution rate.

3.3.1 NUMERICAL RESULTS

Introducing varying lithology does not require many changes in the numeri-
cal algorithm for the evolution of a single fracture. Basically, the calculation
procedure is the same as described in Sec.3.1. Additionally, one has to en-
ter the parameters describing the positions of the boundaries and the rate
orders for each lithology.

Let us first assume two different lithologies: n1, kn1 for x ≤ KL
and n2, kn2 for x > KL. We take the switch concentration for both
lithologies equal; in this case the rate constants are related by kn2 =
kn1(1 − cs/ceq)n1−n2 . This gives only two additional parameters to the
basic model presented in Sec.3.1: n2 and K.

Fig.3.17 presents the numerical results for the standard fracture, with
n1 = 4, n2 = 6 and K = 0.5 (a,b,c) and for the reverse case where n1 = 6
and n2 = 4 (d,e,f). The TB for the first case (Fig.3.17a) is almost two
orders of magnitude higher. Figures b,c,e and f confirm the discussion on
Fig.3.16. Dissolution rates and aperture widths at the lithology boundaries
face a step change either in the positive (n2 < n1) or negative directions
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Figure 3.17: a) Evolution of flow rate in time for the standard fracture with n1 = 4,
n2 = 6 and K = 0.5 (see Fig.3.15b). b,c) Profiles of dissolution rates and aperture
widths for n1 = 4, n2 = 6 and K = 0.5 plotted at 0.1, 45.8, 452.1, 599.4, 649.1, 665.5,
670.9,672.5, 673 and 673.1 ky marked from 1-10 respectively. d) Evolution of flow rate
in time for the standard fracture with n1 = 6, n2 = 4 and K = 0.5. e,f) Profiles of
dissolution rates and aperture widths for n1 = 6, n2 = 4 and K = 0.5 at 0.1, 3.3, 5.8,
7.3, 8.2, 8.7,9, 9.2, 9.3 and 9.4 ky marked from 1-10 respectively.
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(n2 > n1). Therefore the evolution of a fracture strongly depends on the
side from which the water enters.

To get some more insight into the problem, we can apply the bottleneck
principle described in Sec.3.1. As shown there, the initial rate at the bot-
tleneck is required to describe the breakthrough behaviour of the system.
Without a proof, we can expect bottlenecks either at x = KL or x = L, so
we focus on the rates there. We use Eq.3.27 to obtain the initial rates at
KL (b0 � a0 and KL � xs) at the n1 side of lithology boundary.

F (KL)n1 = F (xs)
[
1 +

KL

λn1(xs)

]n1/(1−n1)

(3.53)

Concentration and therefore the saturation ratio is continuous across the
boundary. From Eq.3.53 and Eq.2.11 we calculate the concentration at
KL. Inserting it into the rate equation with n2 and kn2 we obtain the rate
on the n2 side of the boundary

F (KL)n2 = F (xs)
kn2

kn1

[
1 +

KL

λn1(xs)

]n2/(1−n1)

. (3.54)

The ratio between the rates on both side of the boundary at KL is

F (KL)n1

F (KL)n2

=
kn1

kn2

[
1 +

KL

λn1(xs)

](n1−n2)/(1−n1)

. (3.55)

Employing Eq.3.28, we obtain the rate at the exit:

F (L) = F (KL)n2

(
1 +

(1 −K)L
λn2(KL)

)n2/(1−n2)

. (3.56)

If F (L) > Fmin(KL) the bottleneck is at x = KL , otherwise it is at x = L.

3.3.2 THE CASE n2 > n1

If n2 ≥ n1, the bottleneck is always at x = L, since the rates at the
boundary drop and continue to drop as the solution proceeds towards the
exit. To get at least an estimation for the behaviour of TB, we make a
rather crude approximation and assume the following:

• Penetration length λn2 is large, such that the rates do not change much
between the boundary and the exit. Therefore F (L) ≈ F (KL)n2 (see
Eq.3.56).

• The first part of the fracture opens up quickly, therefore the hydraulic
head acts only on the bottleneck part x > KL, i.e. i = h/(1 −K)L.
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These approximations enable us to get an estimate of TB for 0.2 < K < 0.8.
Using the same procedure as in Sec.3.1, i.e. inserting the rate F (KL)n2 into
Eq.3.29 and integrating it, we obtain

TB ≈ n1 − 1

3n2 − n1 + 1
·a0 (K(1 −K))

n2
n1−1

2γF (cs)
·
(

n1 − 2

2n1 + 1
· a0

2γF (cs)

)−n2/n1

·
(

1

T 0
B

)−n2/n1

.(3.57)

T 0
B is the breakthrough time if n = n1 along the entire fracture. With

increasing K, F (KL)n2 and the length of the bottleneck part (1 − K)L
decrease. Both effects oppose each other with respct to the breakthrough
time. This is maximal at K = 0.5 as can be calculated from Eq.3.57. Fig.
3.18a shows the dependence of TB on K for the standard fracture with
n1 = 4 and n2 = 5, 6 and 7. The dashed line denotes the approximation
given in Eq.3.57 for n2 = 7 .
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Figure 3.18: a) Dependence of breakthrough time on the position of lithological bound-
ary (x = KL) for the standard fracture, where n1 = 4 and n2 = 5, 6, 7 (denoted on the
line). The dashed line is an approximation given in Eq.3.57. b) As in figure a, but for
n1 = 11 and n2 = 10, 9, 8, 7, 6, 5, 4 and 3.
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3.3.3 THE CASE n2 < n1

If the rate order at the boundary drop, the dissolution rate is boosted up.
The bottleneck can form either at x = KL or at x = L depending on the
position of boundary and the change of dissolution rate there. For any pair
of n1 and n2 there is a K where the rates at both possible bottlenecks are
equal - we will call it Kmin.

If K < Kmin, the bottleneck is at the exit. As K increases, the rate at
the exit increases and the length of the bottleneck part decreases. Conse-
quently the breakthrough time drops with K.

Once K reaches the value Kmin the two bottlenecks open simultane-
ously. Breakthrough with respect to K is minimal at this point.

For K > Kmin, the bottleneck is at x = KL. The rate at KL decreases
with increasing K and the length of bottleneck part (x < KL) increases.
Both variations contribute to the rise of TB with K.

The described behaviour is also shown in the Fig.3.18b. In this case
n1 = 11 and n2 takes the values between 10 and 3.

3.3.4 MULTIPLE BOUNDARIES AND BOUNDARIES

WITH INSOLUBLE ROCK

Arbitrary settings with multiple lithology can be assumed in nature as well
as in the model. Fig. 3.19 gives an example of a fracture extending through
a sequence of limestone sections with n = 4 and n = 6, starting with n = 4.
The bottlenecks form in the region with higher kinetics order n = 6. Q(t),
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Figure 3.19: a) Evolution of dissolution rates in a fracture extending through four
boundaries between n = 4 and n = 6. Lithology changes every 2 · 104 cm. Profiles were
recorded at 0.1, 14.6, 62.3, 99, 113.9, 119.7, 121.8, 122.4 and 122.7 ky, marked from 1-9
respectively. b) Aperture widths at the same times as in figure a.
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not shown here, behaves as in Fig.3.17. Initially it rises fast due to the
opening of n = 4 parts, but then builds up a plateau due to the bottlenecks
in n = 6 regions which delay the breakthrough event. The rates between
successive n = 4 regions are almost continuous, since the concentration
within n = 6 regions rises only slightly, thus the aggressivity of the solution
with respect to the limestone with n = 4 is preserved there.

One can imagine many possible lithology settings. The extreme contrast
occurs when one part of the fracture extends through insoluble rock. In
this case the flow rate initially rises due to the opening of the soluble part
of the fracture, but the constant resistance of the insoluble part switches
off the feedback mechanism. Fig.3.20 illustrates this.
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Figure 3.20: a) Evolution of flow rates in fracture with insoluble walls for x ≥ KL
(K = 0.25, K = 0.5 and K = 0.75). b) Aperture width profiles for the K = 0.5.
Lowermost line is at 100y, later profiles are taken with 4ky steps between 5 and 70ky.

Fig.3.20a shows the evolution of flow rates for the standard fracture
with insoluble walls for x ≥ KL for three different values of K as denoted
on the lines. Flow rate Q converges to the value 1/(1−K)Q0, where Q0 is
the initial flow rate and (1−K)L is the length of the insoluble part. Figure
3.20b shows the evolution of fracture aperture widths for K = 0.5.
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3.4 THE INFLUENCE OF SUBTERRANEAN CO2
SOURCES ON INITIAL KARSTIFICATION:
A SINGLE FRACTURE

Various geochemical settings can change the parameters of the rate equation
within a single karstifying fracture. The change of the kinetic order n was
discussed in Sec.3.3. Another parameter is the equilibrium concentration.
This is determined by the content of CO2 in the solution as shown in Sec.2.1.
So far we have assumed that CO2 stems entirely from the surface and that
ceq is constant along the entire fracture. One could assume various sources
delivering CO2 into the fracture and thus shifting the ceq. Due to the non-
linearity of the rate equation, the dissolution rates are highly sensitive to
the variations of c/ceq if the solution is close to saturation. During most of
the initial karstification c/ceq > 0.99 (cf. Fig. 3.3c) along almost the entire
fracture . Therefore subterranean sources of CO2, which increase the value
of ceq, might heavily influence the initial karstification processes. We discuss
this topic in this section. It is not our aim to discuss the mechanisms of

Figure 3.21: Conceptual models of subterranean CO2 sources: a) Point source of CO2

at position KL causes a step increase of ceq. b) Even distribution of CO2 input between
the entrance of the fracture and the position KL causes a linear increase of ceq in this
region.

CO2 delivery in detail, but to incorporate the effect of possible CO2 sources
into the model of a single fracture. We will focus on two simple cases:

• Point input of CO2(Fig.3.21a): Although point sources are a rather
unrealistic idealization, one can expect a very focused CO2 delivery into
the karstifying fractures when volcanic activity is present in the vicinity
of evolving karst. The amount of CO2 delivered by volcanic activity into
the solution changes its ceq with respect to calcite by ∆ceq.

• Extended input of evenly distributed CO2 (Fig.3.21b): This sce-
nario could refer to the case of microbial activity. If heterotrophic micro-
organisms dwell on the walls of the fracture, they oxidize organic carbon
constituents of karst water by aerobic metabolism and produce CO2 along
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the flow path of the water (Menne, 1998). The consequence is a linear
increase3 of ceq within a part of the fracture where CO2 input is evenly
distributed. The increase of CO2 concentration delivered by bacteria can-
not exceed the concentration of O2 in the water prior to conversion. The
solubility of oxygen in the water is 11.3mg/l at 10oC (Freeze and Cherry,
1979). Therefore a maximal increase of CO2 is about 3.5 · 10−7 mol/cm3.
This corresponds to change of ceq by ∆ceq = 2 · 10−7 mol/cm3 if ceq prior
to CO2 delivery is 2µmol/cm3. Extended sources can also result from
volcanic origin and may therefore exhibit a much larger ∆ceq.

3.4.1 POINT SOURCES OF CO2

Let us suppose that a point CO2 source is introduced into the karstifying
fracture at some position xin = K · L, where K ≤ 1.

The chemical picture of the scenario is presented on the Fig.3.21. The
thick line presents the CO2 −Ca2+ equilibrium curve. See Fig.2.1 and the
discussion in Chap.2 for more details. The solution enters into the fracture
with some initial Ca2+ and CO2 concentration represented by point A. The
chemical pathway proceeds along the line A-CA until at point B’ the con-
centration of CO2 rises and dissolution proceeds along the parallel pathway
B-CB. The net result of the CO2 input with respect to our model is the
change of the equilibrium concentration ∆ceq. Note that point A corre-
sponds to the physical point x = 0 in the fracture and point B’ to the point
x = KL. In all the following model runs point B’ is very close to the equilib-
rium curve. In summary: The dissolution rates for x ≤ xin are determined
by ceq1 , the equilibrium concentration related to the CO2-concentration of
the inflowing water. At x = xin the equilibrium concentration increases
due to the input of CO2 to ceq2 = ceq1 + ∆ceq.

NUMERICAL RESULTS

To incorporate the above settings into the model of a single fracture we
change ceq in the rate equation according to:

ceq =
{

ceq1 : x < KL
ceq2 : x ≥ KL.

(3.58)

The new parameters describing this extended model are K and α =
ceq1/ceq2 . We will focus our discussion on the effect of these two parameters
on the breakthrough time. Fig.3.23a shows the evolution of flow rates for

3A linear incease is a good approximation for the small changes of ceq . Generally the increase
follows a cubic law as described in Sec.2.1
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Figure 3.22: Chemical evolution of a H2O − CaCO3 − CO2 solution flowing in a frac-
ture under closed system conditions with respect to CO2. The thick curve represents
equilibrium with respect to calcite. See text for explanation.

various values of K for the standard fracture (see Tab.3.1 in Sec.3.1 for
the basic parameters) and α = 0.91 (∆ceq = 0.2µmol/cm3). All curves
exhibit the same behaviour with breakthrough times changing from 21.7ky
at K = 1 (standard fracture) to a minimum value of 7.5ky at K = 0.5.

Fig.3.23b illustrates the dependence of the breakthrough time on K
for various values of α. All curves exhibit a minimum which depends on
α. Note that the breakthrough times at K = 0 are related to an inflowing
solution with ceq2 . Therefore these breakthrough times drop with increasing
ceq2 as TB = α4/3 · T 0

B (see Eq.3.34).
Fig.3.24a shows the TB as a function of α for various values of K. In

all cases there is a drastic drop of the breakthrough times in the region
between α = 1 and α ≈ 0.9. Two sets of curves are observed. For large
K (K > 0.7) the breakthrough times drop up to a factor of two between
α = 1 and α = 0.975 which corresponds to ∆ceq = 0.05µmol/cm3. Then
only little variation is observed as α decreases. In contrary, for K < 0.5 the
breakthrough times show a significant continuous decrease also at smaller
values of α.

To explain this behaviour we focus on two representative cases. Fig.3.24b
shows the dissolution rates along the fracture for K = 0.25 (dashed lines)
and K = 0.75 (full lines) for various times of evolution. At the onset of
karstification the dissolution rates exhibit a characteristic drop close to the
entrance until they are boosted up at xin = KL. Then the rates drop
again.

For K = 0.25 the rates at the exit are considerably lower than at xin at
all times. This forms the bottleneck as shown by Fig.3.25a.

The situation becomes different for K = 0.75 (full lines). They first
follow the rates as in the case of K = 0.25, and drop further until they are
boosted up at 0.75L. Now the rates at the exit are higher and the bottleneck
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in Eq.3.64.

is at KL during the entire time span. This is shown by Fig.3.25b.
From the numerical results the following conclusions can be drawn:

• For any α, a Kmin exists, where TB is minimal. At Kmin the rates at
x = KL and at x = L are equal.

• In the region K < Kmin, the bottleneck is at the end of the fracture: with
increasing K, the rate there increases and the length of the bottleneck
part x > KL decreases. Thus the breakthrough time decreases in this
region

• In the region K > Kmin, the bottleneck is at KL, F (KL) then decreases
with increasing K, the length of the bottleneck part decreases, and con-
sequently TB increases.
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Figure 3.24: a) Breakthrough times as a function of α for various values of K as denoted
on the curves. b) Dissolution rates for the point input: α = 0.91, K = 0.25 (dashed
lines) and K = 0.75 (full lines). For K = 0.25 profiles are recorded at 0.1, 6.3, 9.2, 10.11,
10.33, 10.37ky, marked by 1a-6a. For K = 0.75 profiles are recorded at 0.1, 6.93, 10.19,
11.07, 11.27 and 11.31ky, marked by 1b-6b.

ANALYTICAL ESTIMATION OF TB

To give at least an approximate analytical results and to prove the above
statements, we refer to the bottleneck principle. We use Eq.3.28 to obtain
the rates at the both possible bottlenecks, i.e. at x = KL and at x = L.
The initial dissolution rate at the input of CO2 is equal to:

F (KL)↓ = F (cs)
(
1 +

KL

λn(xs)

) n
1−n

. (3.59)

From numerical results we see that for most cases of interest the solution
at x = KL is close to ceq1 , such that ceq1 − c(KL) << ceq2 − ceq1 . This
simplifies the rate after the CO2 input to

F (KL)↑ = kn(1 − α)n. (3.60)
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Figure 3.25: Evolution of aperture widths for the case from Fig. 3.24a) K = 0.25,b
K = 0.75

↓ and ↑ denote the rate at KL before and after the CO2 input. Applying
Eq.3.28 we obtain an estimation for the exit rate:

F (L) = kn(1 − α)n
(
1 +

(1 −K)L
λn(KL)

) n
1−n

. (3.61)

For convenience we define a new parameter λ̃ as

λ̃ =
ρghceq1a

3
0

24ηL(n− 1)kn
, (3.62)

so that the penetration lengths at xs and x = KL are (see also Eq.3.24):

λn(xs) = λ̃(1 − cs/ceq1)
1−n and (3.63)

λn(KL) =
λ̃

α
(1 − α)1−n.
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From F (KminL) = F (L) and neglecting the term ”1” in Eqs.3.59 we get

Kmin =

(
λ̃
L
(1 − α)1−n + α

)
1 + α

≈ α

1 + α
. (3.64)

The right side is valid if (λ̃/L)(1 − α)1−n << α which also means (1 −
K)L/λn(KL) � 1. Then Kmin becomes independent of λ̃/L and the break-
through time can be expressed as

Tmin
B = T 0

B ·Kn/(n−1)
min = T 0

B

(
α

1 + α

)n/n−1

. (3.65)

Full circles on a Fig.3.23b mark this approximation. T 0
B is the breakthrough

time without CO2 input given by Eq.3.34 in Sec.3.1. Note that Tmin
B has the

same functional dependence on basic parameters as T 0
B. The approximation

is in a good accordance with the finite difference model for α ≤ 0.91. Then
it fails, since the assumption does not hold anymore.

Another limiting case is when ceq2 becomes so large, that the dissolution
rates at the exit are sufficiently high and the last part of the fracture widens
quickly in comparison to the first part. Therefore after a short time the
hydraulic head acts only along the region x ≤ KL. The breakthrough time
can then be calculated by replacing L by KL and h/L by h/KL in Eq.3.34.
In this case we obtain

T lim
B = T 0

BK
2n

n−1 . (3.66)

This result is presented by the lower dashed curve in Fig.3.23b. Finally for
K = 0, the TB dependence on α can be directly obtained from Eq.3.34 as
T 0
Bα

n/(n−1) .
In all three limiting cases, the dependence of TB on the basic parameters

(c.f. Sec.3.1) is, within the limit of our assumption, given by that of T 0
B.

We can conclude, since all the equations solely contain the algebraic group
λ̃/L, that this is also generally true and read TB for all intermediate cases
from Fig.3.23b if T 0

B is known, provided n = 4 . For other values of n similar
graphs can be constructed. In the region between n = 3 and n = 10, not
presented here, but checked, the deviations are not large.

3.4.2 EXTENDED SOURCES OF CO2

We assume delivery of CO2 by an evenly distributed population of micro-
organisms oxidizing organic carbon into CO2. They deliver a constant rate
of CO2 as long as a sufficient amount of oxygen and organic matter is
available.
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NUMERICAL RESULTS

We model the situation by using a linear increase of ceq in the rate equation:

ceq =
{

ceq1 + ∆ceq

KL
x : x < KL

ceq2 : x ≥ KL
(3.67)

Additional parameters describing the extended model are now K and
∆ceq.

Fig. 3.26a shows the dependence of the breakthrough times on K for
various values of ∆ceq. Other parameters correspond to the standard frac-
ture with ceq1 = 2µmol/cm3. TB decreases with increasing K.
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Figure 3.26: Efect of the extended sources of CO2 on the breakthrough time of the
standard fracture. a) TB dependence on K for various values of ∆ceq[µmol/cm3] as
denoted on the lines. The dashed lines show the approximation given by Eq.3.75 for
∆ceq = 0.07µmol/cm3, ∆ceq = 0.2µmol/cm3 and ∆ceq = 1µmol/cm3 respectively. b)
TB dependence on ∆ceq for various values of K as denoted on the lines.

Fig. 3.26b shows the breakthrough times as a function of ∆ceq for
various values of K (denoted at the curves). There is a steep decrease at
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low ∆ceq. Most of the reduction occurs for ∆ceq ≤ 0.05µmol/cm3. Thus
when the organism dwell in the first half of the fracture (K = 0.5) and
only about 25% of the maximum available oxygen (11.3mg/l at 10◦C) is
converted to CO2, the breakthrough time is reduced from 21.7 ky to 7.5 ky.
If only 10% of O2 is converted (∆ceq = 0.025µmol/cm3) the reduction is
still to 10 ky. Fig.3.27a shows the dissolution rates and the aperture widths
along the fracture at several timesteps in the evolution. Again, the rates
at the entrance drop steeply and then become constant. Beyond x = KL
, ceq is constant and the rates drop continuously according to Eq.3.20 as
the solution moves towards the exit. Fig. 3.27b shows the corresponding
profiles of the aperture widths. The bottleneck for the flow is located at the
exit and therefore the widening there determines the breakthrough time.
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Figure 3.27: a) Profiles of the dissolution rates in standard fracture with extended CO2

source at: 0.1, 3, 5, 5.6 5.82 and 5.83 ky, marked from 1-6. b) Evolution of fracture
widths at the same time-steps.

65



p

The influence of subterranean CO2 sources...

ANALYTICAL APPROXIMATIONS

To understand this behaviour, we try to obtain some analytical approxi-
mations. The bottleneck forms always at the exit. The rate there can be
obtained using Eqn.3.28 inserting KL and L for x1 and x2 respectively.

To calculate the rates at x = KL, one has to solve Eq.3.5 for the
linear increase of ceq as given in Eq.3.67. For convenience we introduce the
variable ∆c(x) = ceq(x)− c(x). Eq.3.5 then becomes

kn

(
∆c(x)
ceq(x)

)n

Pdx = Qd(ceq(x)−∆c(x)) (3.68)

We introduce κ = ∆ceq/KL and rewrite the first part of Eq.3.67

ceq(x) = ceq1 + κx = ceq1

(
1 +

κx

ceq1

)
(3.69)

Inserting the upper expression into Eq.3.68 and reordering it we get:

κ− d∆c

dx
= kn

P

Q

(
∆c

ceq1(1 + κx/ceq1)

)n

. (3.70)

The numerical results show, that for the cases of our interest κ � d∆c/dx
, i.e. the variation of ∆c(x) is small compared to the rise of ceq. Applying
this in the upper equation gives:

∆c

ceq1(1 + κx/ceq1)
=

∆c

ceq(x)
=

(
Qκ

knP

)1/n

=
[

1
kn

F (KL)
]1/n

. (3.71)

The rate at x = KL can now be written as

F (KL) =
κQ

P
=

∆ceqQ

PKL
. (3.72)

The result is somewhat surprising, since the rate does not depend on ceq1 .
This is also confirmed by numerical runs.

The exit rate can now be calculated by inserting the obtained F (KL)
into Eq.3.28. We obtain

F (L) = F (KL)
[
1 +

(1 −K)L
λn(KL)

] n
1−n

,where (3.73)

λn(KL) = λ̃
ceq2
ceq1

(
F (KL)

kn

)(1−n)/n

. (3.74)

We need to determine the range of the new parameters, where the en-
hancement of karstification is considerable. To do this we compare the
initial dissolution rates F (L, 0) to the initial dissolution rates F 0(L, 0) (see
Eq.3.31) for the fracture with no CO2 input. As a criterion we choose
TB/T

0
B ≈ 0.5 and correspondingly F (L, 0)/F 0(L, 0) ≈ 2. Therefore we
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search for εcrit = ∆ceq/ceq1 where this criterion is achieved. For each K

and L/λ̃ we obtain a value of ∆ceq where TB is reduced to 1/2. The full
lines on Fig.3.28 show the dependence of εcrit on K for various values of
L/λ̃ denoted at the corresponding curves. The lowest value of L/λ̃ corre-
sponds to a fracture with a0 = 0.04cm,L = 104cm, h/L = 0.05, the highest
value represents a fracture with a0 = 0.01cm,L = 106cm, h/L = 0.01. The
middle curve is our standard fracture. Thus the entire region of natu-
ral karstification is covered. The four horizontal dashed lines present the
maximal possible values of εmax = ∆cmax

eq /ceq1 which can result from micro-
organisms when using up all the available oxygen. This causes an increase
of the CO2 concentration by 0.35µmol/cm3. The corresponding value of
∆cmax

eq depends on ceq1 ; ∆cmax
eq = 0.32µmol/cm3 at ceq1 = 0.5µmol/cm3,

∆cmax
eq = 0.3µmol/cm3 at ceq1 = 1µmol/cm3, ∆cmax

eq = 0.2µmol/cm3 at
ceq1 = 2µmol/cm3 and ∆cmax

eq = 0.1µmol/cm3 at ceq1 = 4µmol/cm3.
If the curves denoting εcrit are above the corresponding lines represent-

ing εmax, karstification is not significantly enhanced. On the other hand,
if εcrit < εmax a large enhancement is to be expected. From Fig. 3.28
one reads that a deep invasion of micro-organisms into the fracture is nec-
essary. In view of the initial flow velocities of the water in the order of
several metres/day, such deep invasion seems likely. For the standard case
with ceq1 = 2µmol/cm3, K > 0.4 is required. If little external CO2 is
supplied from the surface, i.e., ceq1 = 0.5 − 1µmole/cm3, this value of K
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Figure 3.28: The full lines represent the value of ∆ceq/ceq1 where the breakthrough
time of the fracture with the extended CO2 source is reduced to half compared to the
breakthrough time of the fracture with no extra CO2. Numbers denote the value of L/λ̃
for the presented cases; the lowest value corresponds to a fracture with a0 = 0.04cm,
L = 104cm, h/L = 0.05, the highest represents a fracture with a0 = 0.01cm, L = 106cm,
h/L = 0.01 and the middle curve is our standard fracture. Dashed lines present the
εmax = ∆cmax

eq /ceq which can be delivered by microbial activity for four different values
of ceq1 as given on the lines. If a full line is below a certain dashed line means that the
bacterial activity can reduce the ”intrinsic” breakthrough time for more than one half.
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is reduced and significant enhancement of karstification can arise solely by
the activity of micro-organisms .

It is also possible to give an extreme limit of enhancement for each
value of K. If ∆ceq1 becomes so large that the constant initial dissolution
rate becomes very large compared to that of the same fracture with no
CO2 supply, karstification is entirely governed by the evolution of the last
part of the fracture which represents the bottleneck for the flow. Then the
hydraulic head acts entirely along that part, so that

TB(K) = T 0
B(ceq2) · (1−K)

2n
n−1 , (3.75)

T 0
B(ceq2) is the breakthrough time of the corresponding fracture with con-

stant ceq = ceq2 . The lowest dashed curve in Fig. 3.26b represents this limit,
for the standard fracture. It shows that bacterial activity can be sufficient
to approach this limit closely. It should be noted that the approximation
breaks down when K is close to 1. The two higher dashed curves show that
for smaller values of ∆ceq significant deviations occur.

Fig.3.29a represents the dependence of TB on ∆ceq for various values of
L and K. . Three different lengths are presented; L = 106 cm by the full
lines, L = 105 cm (standard fracture) by the dashed lines and L = 103 cm
by the dotted lines. The values of K are denoted at the lines. Other
parameters are ”standard”. It demonstrates clearly that for L > 1 km
and K > 0.5 an increase of ceq by 1µmol/cm3 is sufficient to reach the
maximum of enhancement. For karstification along short fractures of about
100m, however, biogenic CO2 reduces the breakthrough time only to about
one half. For low values of K ≈ 0.1 no significant enhancement arises at
all. This again shows that deep invasion of micro-organisms into the initial
karst system is necessary.

THE REVERSE CASE: EXTENDED INPUT IN THE SECOND HALF
OF THE FRACTURE

The full lines on Fig.3.29b present the dependence of TB on K for various
values of ∆ceq if the CO2 is delivered in the second part of the fracture at
x ≥ KL. In this case ceq = ceq1 for x < KL , and ceq = ceq1 + κ(x −KL)
for x ≥ KL. The numbers on the curves denote ∆ceq/ceq1 .

For comparison, the dashed lines present the results from Fig.3.26.
When CO2 is delivered for x < KL, the bottleneck is the exit part of the
fracture. The breakthrough times in this case are some function of (1−K).
If, however, CO2- supply is delivered at x > KL, than the part x < KL
represents the bottleneck and the breakthrough time is a similar function,
but now of K. At K ≈ 0.5 breakthrough times for both cases should not
differ much. Moreover the corresponding curves should be mirror like, be-
cause breakthrough times should be close to each other if the lengths of
the bottlenecks are equal for the two cases. As an example, breakthrough
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time for some K for the case where CO2 is delivered at x < KL , should
be similar to the breakthrough time at 1 − K for the case where CO2 is
delivered at x > KL since the lengths of the both bottlenecks are equal.
This is nicely demonstrated by Fig. 3.29b and gives further support to the
”bottleneck method” which we have used to analyse the numerical results.

So far we have assumed that microbiological oxidation of organic carbon
increases with increasing flow through the fracture, such that the increase in
ceq is independent of the flow rate. This implies that the overwhelming bulk
of bacteria is floating in the solution and their concentration is independent
on flow rate. If, however, the bacteria are located at the fissure surfaces
forming a biofilm and their rate of production is assumed to be constant,
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Figure 3.29: a) Breakthrough times for the standard fracture (full lines) and fractures
with L = 106cm (dashed) and L = 5 · 103cm (dotted) as a function of ∆ceq. The
numbers on the curves denote K. The scale is in units of T 0

B , i.e. breakthrough times
of the respective fractures without CO2 supply. These are 0.32ky, 21.7ky and 467ky,
for L = 5 · 103cm, L = 105cm and L = 106cm respectively. b) TB(K) for the values of
∆ceq[µmol/cm3] denoted at the lines. The dashed lines denote the case where the input
is in the first part of fracture, same as in Fig.3.26a. The full lines represents the case,
when CO2 input starts at KL.
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then the concentration of CO2 decreases as the flow rate increases. If at
time t = 0, ∆ceq(0) is the increase in equilibrium concentration with respect
to calcite at flow rate Q(0), at later times t, ∆ceq(t) = ∆ceq(0) · Q0/Q(t).
This can be incorporated into the numerical model by employing ∆ceq(t)
in each time step. The results qualitatively resemble those of Fig.3.26,
although the variations are less pronounced. One could envisage many
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Figure 3.30: a) Profile of the dissolution rates in the standard fracture with extended
CO2 source between K1L and K2L, where K1 = 0.3 and K2 = 0.8. Profiles are recorded
at: 0.1, 2.1, 2.95, 3.23, 3.4ky, marked from 1-6, respectively. b) Profiles of the aperture
width at the same times.

different scenarios of CO2 input into the karstifying fractures. As a final
example we take the case, where CO2 is supplied between x1 = K1L and
x2 = K2L, which causes a constant increase of ceq in this region. For x >
K2L, ceq remains constant. Fig.3.30 show the evolution of the dissolution
rates and aperture widths for the standard fracture with K1 = 0.2,K2 =
0.8,∆ceq = 10−7 mol/cm3. After an abrupt drop close to the entrance the
rates increase in the region where CO2 is released, and then drop when
approaching the exit. Breakthrough is reduced by a factor of almost 7 with
respect to the T 0

B.

3.4.3 CONCLUSION

Subterranean sources of CO2, either supplied at point inputs or continu-
ously along a part of a karstifying fracture, cause a significant enhancement
on early karstification. The reduction of breakthrough times depends on
the amount of CO2 supplied and on the position of the inputs.

For point inputs the highest reduction of breakthrough times is observed
if the input is located near the center of the fracture. In this case a small
increase of pCO2 by about 2 · 10−3 atm is enough to reduce breakthrough
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times to about a half. If the input is close to the entrance, an increase of
about 0.1 atm is required for a significant reduction of breakthrough times.
For inputs close to the exit of the fracture, even a large increase of pCO2

affects breakthrough times only moderately. This values correspond for
situations of vegetated karst with ceq1 ≈ 2µmol/cm3. For bare karst areas
with saturation of about 0.5 − 1µmol/cm3, the influence of CO2 inputs is
increased and lower values of additional CO2 are needed to cause similar
decrease of breakthrough times.

Continuous CO2 input can arise from from extended diffuse gas mi-
gration from deep volcanic sources or from heterotrophic micro-organisms
dwelling at the walls of the karstifying fractures. Micro-organisms can cause
an increase of pCO2 by about 6 · 10−3 atm. For natural karstification this
is enough for a significant reduction of breakthrough times, provided the
micro-organisms have invaded deep into the fracture, populating at least
the first third of length. In this case the influence of CO2 supply for bare
karst areas is even more enhanced. The karstification can arise even if only
atmospheric CO2 is contained in the inflowing water.
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3.5 THE ROLE OF MIXING CORROSION IN EARLY
KARST EVOLUTION

3.5.1 BACKGROUND AND MODEL STRUCTURE

A BRIEF HYSTORY OF MIXING CORROSION: WHEN AND WHY ?

The chemical background of mixing corrosion has been already discussed
in Sec.2.1. If two saturated solutions with different chemical compositions
mix, the aggresivity can be renewed due to nonlinearity of the Ca2+ −CO2

equilibrium curve. The closer to saturation the mixing solutions are, the
higher is the shift of the aggressivity. Although mixing corrosion had been
known before, its role in karst was first stressed by Bögli (1964), (1980)
who suggested it as a possible cave forming mechanism.

Experiments by Weyl (1958) and Erga and Terjesen (1956) revealed a
linear rate law for the dissolution kinetics of limestone in H2O−CO2 solu-
tion and therefore the evolution of extended karst conduits as observed in
nature could not be explained by theoretical models (White and Longyear,
1992). Bögli suggested that caves could originate deep in the rock due to
the mixing of saturated solutions. Mixing corrosion was also discussed by
Dreybrodt (1981a) who showed that, owing to this mechanism, cave con-
duits can grow when two saturated solutions mix along an intersection of
fractures. This model does not explain the fact pointed out by Ford and
Ewers (1978), that most of the caves develop along bedding planes without
any intersections by joints.

Mixing corrosion was put into the ”back stage”, after it was shown that
the action of non-linear dissolution kinetics alone can generate extended
karst conduits. In Sec.3.4 we have seen that due to the nonlinearity only
a small change of parameters in the rate equation causes a large reduction
of TB. From the model point of view we can consider mixing corrosion
as an extra source of CO2 therefore we might expect it to cause a similar
enhancement of early karstification.

MODEL STRUCTURE

To achieve mixing of two solutions, we have to leave the ”easy-to-analyse”
territory of single fracture models. Fig.3.31 shows the simplest case where
mixing is possible: Two symmetric fractures joining into a third one. All
have initial aperture widths a0 and widths b0. Fractures 1 and 2 join into
fracture 3 at the distance kL from the entrance, where L is the total length
of the system. At the confluence water is mixed completely. The hydraulic
head at the entrances 1 and 2 is h. At the outflow the hydraulic head is
set to zero.
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Figure 3.31: Symmetric confluence of two fractures. Conceptual model for the most
simple scenario where mixing corrosion is active. p1 and p2 denote the pCO2 of solutions
at the entrances of the fractures which join at the position kL.
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Figure 3.32: Chemical scenario of mixing corrosion. See text for explanations.

Fig.3.32 shows the chemical evolution of the solution in fractures 1 and
2 with respect to CO2 and Ca2+. The solution enters at points 1 and
2 with [Ca2+] = 0 and different concentrations of CO2 corresponding to
equilibrium with p1 and p2 respectively. The evolution of solutions within
the fractures is illustrated by the full lines. Points 1’ and 2’ depict the
chemical composition at the exits of both fractures. Point M shows the
concentration cmix after immediate complete mixing at the confluence. The
equilibrium is given by the intersection of the dashed line representing
dissolution by the mixed solution in fracture 3 under closed conditions
and the CO2 − Ca2+ equilibrium curve (fat line).

Another scenario is also possible. Assume that both soils exhibit dif-
ferent soil structures and contain calcite. In that case water seeping down
will dissolve calcite under open system conditions designated by the dashed
lines BB’ and AA’ until at points A’ and B’, respectively, it enters into the
fractures. From then on it dissolves limestone under closed system con-
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ditions. This leads to the same amount of undersaturation as in the first
scenario given above. Even if points A and B coincide, this last scenario
allows mixing corrosion.

To calculate the evolution of fracture widths, we use the following pro-
cedure:

1. Calculate the resistance of each fracture and the head hj at the junction
according to

hj = h
R1R3 + R2R3

R1R2 + R1R3 + R2R3

, (3.76)

where R1, R2 and R2 are the resistances of the three fractures calculated
by Eq.3.2.

2. Apply the transport-dissolution model (see Sec.3.1) and calculate the
widening and chemical evolution of fractures 1 and 2.

3. Calculate the concentration cmix entering into fracture 3 assuming com-
plete mixing,i.e.

cmix =
(
Q1c

j
1 + Q2c

j
2

)
/(Q1 + Q2), (3.77)

where cj1 and cj2 are the concentrations in the fractures 1 and 2 at the
confluence.

4. Calculate the widening of the fracture 3.
5. Repeat steps 1.-3. until the onset of turbulence.

3.5.2 NUMERICAL RESULTS AND DISCUSSION

MODEL PARAMETERS

Following parameters were used in the runs that follow: ai(t = 0) =
0.02 cm, bi(t = 0) = 100 cm for i = 1, 2, 3. h = 5000 cm, p1 = 0.05 atm
and p2 is in the range of 0.003 atm to 0.05 atm. Kinetic constant and or-
der is the same as in the standard fracture: k1 = 4 · 10−11 mol cm−2s−1,
kn = 4 · 10−8 mol cm−2s−1, cs = 0.9ceq, n = 4.

Note: from here on the expression ”Mixing Corrosion” will be abbrevi-
ated as MC.

LINEAR KINETICS WITH MC VS. NONLINEAR KINETICS
WITHOUT MC

We start with the results of Böglis concept of MC presented in Fig.3.33,
where dissolution rates are defined only by the linear kinetics. It shows
the aperture widths of fractures 1 and 3, as they develop in time for p1 =
0.05 atm and p2 = 0.003 atm. Due to the exponential decrease of dissolution
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rates, fracture 1 opens at the entrance and the dissolution front progresses
very slowly. Mixing corrosion causes opening at the junction, but has only

0 2 4 6 8 60 62 64 66 68 7010-2

10-1

100

101

102

103

a

3

Fr. 3Fr. 1

To 1.2x105

a
[c

m
]

x[103cm]

1 2
4

5

3

1 2
4

5

0 1 2 3 4 5 6 7 8 9 10 11 1210-2

10-1

100

101

102

bFr.1

Fr.3
7

6

5
4

3

2

1

a
[c

m
]

x[104cm]

Figure 3.33: a) Profiles of fracture 1 and 3 if only linear kinetics is operative. Profiles
are recorded at 0.2, 2, 20, 40 and 400 ky, marked from 1-5 respectively. k = 0.5, p1 =
0.05 atm, p2 = 0.003 atm. Note a break in the x-axis. b) Same settings with p1 = p2 =
0.05 atm . No MC, but non-linear kinetics is active. Profiles at 0.1, 23.9, 48.6, 55.2, 56.9,
57.2 and 57.4 ky, marked by 1-7.

a local importance. There is no breakthrough in a geologically relevant
time. Fig.3.33b shows the evolution of the aperture widths when no MC is
present, i.e. p1 = p2 = 0.05, but nonlinear dissolution rates are assumed.
All other parameters are unchanged. It depicts the profiles of all three
fractures. Note that fractures 1 and 2 are equal due to the symmetry of
the settings . The behaviour is, as expected, very similar to that shown in
the previous sections. Breakthrough is achieved after 57ky.
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NONLINEAR KINETICS WITH MC

As shown MC is not necessary for speleogenesis. But is it important?
In the next step we combine MC (p1 = 0.05 atm and p2 = 0.03 atm) and

non-linear dissolution rates. The aperture widths for the three fractures are
shown by Fig.3.34a. Due to the larger p1 and correspondingly a larger c1

eq,
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Figure 3.34: a) Profiles of aperture widths for p1 = 0.05 atm and p2 = 0.03 atm.
Breakthrough occurs at 17.6ky. Profiles are taken at: 0.1, 6.3, 11.3, 15.8, 17.2, 17.5, and
17.6ky, marked by 1-7. b) Flow rates through fracture 1 (dotted lines) and fracture 2
(full lines) as a function of time for p1 = 0.05 atm and p2 = 0.003, 0.01, 0.02, 0.03, 0.04,
0.045, 0.05 atm marked by 1-7.

the widths in fracture 1 increase by far faster than those in fracture 2. Thus
the resistance of fracture 1 decreases more rapidly. Consequently the head
at the confluence rises (see also eq. 3.76) causing reduced flow rates in frac-
ture 2 compared to those in fracture 1. Therefore dissolution rates at the
exit of fracture 2 remain low, and the restriction of this fracture is main-
tained. At the confluence MC boosts the dissolution rates. Breakthrough
occurs at 17ky, less than one third of the value without MC.
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To elucidate the processes underlying conduit genesis by the combined ac-
tion of MC and nonlinear kinetics Fig.3.34b presents the flow rates Q1 and
Q2 through the fractures 1 and 2 for p1 = 0.05 atm and various values of
p2 in the range from 0.003 atm up to 0.05 atm. In all cases Q1 shows a
slow increase until it is drastically enhanced at breakthrough. Q2 exhibits
a different pattern. The flow rate increases initially , but the rincrease
is suppressed by the rising head at the junction due to the relatively fast
widening of fracture 1. Shortly before breakthrough the resistance of frac-
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Figure 3.35: Evolution cmix/c
mix
eq in time for the same parameters as in Fig.3.34. Dashed

lines 1*-7* depict the corresponding curves when MC is switched off numerically.

ture 1 drops to such low values that the hydraulic head at the junction
approaches the head at the entrance of fracture 1. Therefore the head dif-
ference and consequently the flow rate along fracture 2 decrease until they
become zero. In the symmetric case, where p2 = p1, both fractures behave
in the same way and both exhibit breakthrough (cf. curve 7).

In the case where p1 > p2, Q1 increases more rapidly than Q2, therefore
the effect of MC decreases until at breakthrough it is switched off com-
pletely. This is visualized by Fig.3.35 which shows the saturation ratio of
the mixed solution (cmix/c

mix
eq ) at the confluence as a function of time. Val-

ues of p2 are as in Fig.3.34b . For curves 1-3 with p2 < 0.03 atm this ratio
increases in time until a drastic drop at the breakthrough is observed. It
is interesting to note that for p2 < 0.03 atm the values of TB are almost
equal. A second regime is exhibited for p2 > 0.03 atm. In this region the
ratio cmix/c

mix
eq is only slightly dependent on p2 and decreases slowly in time

until it drops to zero at breakthrough. The value of TB increases with p2.
Curve 7 with p2 = 0.05 atm presents the case without MC.
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CHEMICAL EVOLUTION OF THE SOLUTION IN FRACTURES

To obtain more insight into the mechanisms of this behavior, we discuss
the chemical composition of the solution at the confluence. Fig. 3.36 illus-
trates the pathways of the chemical evolution. Chemical pathways of the
solutions in fractures 1 and 2 (closed system) are represented by the lines
through AAeq and BBeq respectively. gh M0M depicts the evolution of the
concentrations at the entrance of the fracture 3. The fat line depicts the
CO2−Ca2+ equilibrium. Points A,B and M characterize the concentrations
of Ca2+ and CO2 at arbitrary time t. A and B refer to the solutions at the
exits of fractures 1 and 2, M refers to the mixed solution at the entrance of
fracture 3. Point D gives the average concentration of two fully saturated
solutions at the exit of fractures 1 and 2, denoted by points Beq and Aeq.
Point Meq gives the equilibrium composition of the solution entering frac-
ture 3. The subscript 0 at those points indicates the composition at time
zero.

The total undersaturation of the mixed solution with respect to Ca2+

is ∆ctot as shown in the figure. It consists of two contributions, ∆cmix

and ∆ceq . ∆cmix results from mixing of the two undersaturated solutions
(points A and B) in the diagram. It becomes zero if both solutions are
saturated. ∆ceq gives the undersaturation by MC due to the curvature of
the CO2−Ca2+ equilibrium curve. ∆cA and ∆cB are the saturation deficits
of the solutions at the exit of fractures 1 and 2.

During the evolution of the fractures, Q1 increases and therefore point
A moves to lower calcium concentrations. As long as Q2 increases B moves
into the same direction, which is reversed as soon as Q2 starts to decrease.
As a consequence point M moves along the curve M0M . As the ratio Q1/Q2
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Figure 3.36: Chemical evolution of the solution at the exits of the fracture 1 (point A)
and 2 (point B) and at the confluence (point M) after complete mixing. See text.
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increases in time, point Meq moves towards Aeq . Then ∆ceq approaches
zero and MC is switched off.

From Fig.3.35 we can now read the value ∆ctot/c
mix
eq , where cmix

eq refers
to the saturation at point Meq. This is indicated on the right vertical axis.
Note that cmix/c

mix
eq = 1 − ∆ctot/c

mix
eq . For curve 7, where p1 = p2, ∆ceq is

zero during the entire evolution. Therefore ∆ctot = ∆cmix. At time zero
∆cmix of all other curves must be smaller, since ∆cB decreases with decreas-
ing p2. Furthermore ∆cmix is a continuously increasing function in time.
The difference between curves 1-6 to curve 7 represents the corresponding
value ∆ceq for each of these curves in a reasonable approximation. This,
as an example, is indicated by an arrow at curve 3. For curves 1-3, ∆ceq
is initially much larger than ∆cmix . Due to the increasing ratio of Q1/Q2

during the evolution of the fracture, ∆ceq/c
mix
eq decreases and consequently

the curves rise. This is opposed by the increase in ∆cmix/c
mix
eq , which

takes the value of 1 at breakthrough. Therefore a maximum occurs close
to breakthrough. In curve 4 the rise in ∆cmix cancels the decay of ∆ceq
, such that ∆ctot remains constant during most of the time until break-
through. For curves 5 and 6 ∆ceq is much smaller than ∆cmix. Therefore
∆ctot increases in time.

To visualize the effect of ∆ceq to the TB we have also calculated the
breakthrough behaviour, when MC is switched off, by fixing ∆ceq numeri-
cally to zero and retaining only ∆cmix as contribution to ∆ctot. The dashed
lines in Fig.3.36, marked from 1* to 7* corresponding to lines 1-7 respec-
tively, present the results. From these it can be seen that for curves 1-4 MC
has a significant effect to the reduction of TB. For curves 5 and 6, although
∆ceq < ∆cmix, the reduction in TB is still remarkable. Curves 7 and 7* are
identical since ∆ceq = 0 in any case.

3.5.3 THE REDUCTION OF THE BREAKTHROUGH

TIME DUE TO THE MC

To answer the question, why does TB stay constant for p2 < 0.03 atm,
we have calculated TB as a function of k, whereby L has been kept to
1.2·105 cm. Fig.3.37 shows the results for the various values of p2 . For p2 <
0.03 atm the curves are crowded to a small region and exhibit a minimum
close to k ≈ 0.5. For p2 > 0.03 atm, TB increases and for p2 > 0.04 atm a
maximum arises. The upmost curve represents TB(k) for p2 = p1 . We have
also calculated TB for p1 = 0.07 atm, varying p2 from 0.03 to 0.07 atm, and
for p1 = 0.03 atm with p2 from 0.03 to 0.003 atm, and have found a similar
behaviour. To elucidate the reason for the limit in the reduction of TB,
Fig.3.38a shows the evolution of the aperture widths in time for a junction
with k = 0.0167 for p1 = 0.05 atm and p2 = 0.03atm. As can be easily
visualized fracture 1 opens up quickly in time such that its flow resistance
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Figure 3.37: Breakthrough time as a function of k. p1 = 0.05atm, value of p2 are
denoted on the curves.

becomes small against that of fracture 3, which still retains its bottleneck
at the exit. Fracture 2 due to the lower pCO2 also retains its high resistance.
As a consequence the flow rates in this fracture drop quickly.

This is shown by the corresponding curves in Fig.3.39a, which illustrate
the flow Q1 and Q2 as a function of time for various p2 . After about 10
thousand years the ratio Q1/Q2 has dropped to about 0.1. Therefore at
that time MC is switched off almost completely. Due to the decreasing
value of Q2 the dissolution rates in fracture 2 drop and its aperture widths
remain restricted . Fracture 1, however, opens quickly. Therefore the TB is
determined entirely by the evolution of fractures 1 and 3 which experience
dissolution rates independent of p2 during most of their evolution time.
Consequently TB becomes independent on p2.

In contrast if p2 approaches p1 (i.e. p2 > 0.03atm) the effect of MC
becomes small, since ∆ceq < ∆cmix. Furthermore fracture 2 opens up
more quickly, such that the ratio Q1/Q2 drops less rapidly, until it remains
constant when p1 = p2. Nevertheless, the increase of dissolution rates by
the action of ∆ceq is sufficient to exert a significant influence to the TB.
Fig.3.39b shows cmix/c

mix
eq as a function of time for the various p2. The

curves for p2 ≤ 0.03atm (curves 1-3) show a steep rise until MC is switched
off and from then on a plateau until breakthrough occurs.

The behaviour exhibited by Fig.3.37 for k ≤ 0.5 is independent on
p1. Therefore the same behaviour is expected, e.g. for p1 = 0.07atm and
p2-values from 0.003 to 0.07atm. As has been mentioned above this was
verified by computer simulations. If k increases the length of the restricted
exit fracture 3 decreases and as long as the entrance fracture 1 is sufficiently
wide TB decreases.

The situation becomes different for large values of k > 0.5. As an
example Fig.3.38b illustrates the evolution of the aperture widths for k =
0.833 and other parameters as in Fig.3.38a. In contrast to what we have
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Figure 3.38: a) Profiles of aperture width for the junction with k = 0.167, P1 = 0.05atm
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marked by 1-8, respectively. b) Parameters as in figure a, but k = 0.833. Profiles at 0.1,
6.6, 14.5, 20.8, 22, 22.2 and 23.3 marked by 1-7, respectively.

observed above, now the fracture 3 opens first, and fractures 1 and 2 both
remain restricted during almost the entire time until breakthrough.

As long as p2 is sufficiently small, TB is therefore determined by disso-
lution in fracture 1, independent of p2. For sufficiently large p2, however
both ∆cmix and ∆ceq determine TB which rise until ∆ceq = 0, i.e. p1 = p2.
The behaviour of cmix/c

mix
eq and Q1, Q2 as functions of time resembles very

much that with k = 0.5 as plotted in Fig.3.35 and 3.39b and is therefore
not shown.

The essential result of our model calculations so far is condensed in
Fig.3.37. The upper curve depicts the TB with equal p of both inflowing
solutions as a function of k. Therefore MC is absent. k = 0 and k = 1
relate either a single fracture or two identical isolated fractures respectively.
Therefore the TB are equal for both k. For each value of 0 < k < 1, the TB
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various p2 as in Fig.3.34. Other parameters are the same as in Fig.3.38. b) Evolution of
cmix/c

mix
eq as a function of time for the same setting as in figure a.

must be higher, because the initial flow rates through each of the entrance
fractures are lower than that through the isolated fracture. Due to the
higher concentration of Ca2+ at the confluence the dissolution rates are
lower than in the isolated fractures. Only a slight reduction of p2 to about
0.04atm is sufficient to reduce TB significantly. A limit of reduction is
achieved for p2 = 0.03atm and further decrease of p2 has no effect.

3.5.4 ASYMMETRIC CONFLUENCE

The symmetric arrangement depicted by Fig. 3.31 is not very likely in a
natural setting. First the heads at the entrances 1 and 2 can be different,
and furthermore also the length and aperture widths of the fractures cause
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different flow resistances. The flow through the fracture 2 is given by

Q2 =
R3(h2 − h1) + R1h2

R1R2 + R2R3 + R1R3

. (3.78)

Q1 is found by interchanging the subscripts 1 and 2. In the following we
assume h1 > h2 and p1 > p2. Therefore Q1 is positive, i.e. it is directed
towards the confluence. For Q2 three cases are possible as can be read from
eq.3.78:

1. Q2 > 0 when ‖h2 − h1‖R3 < h2R1

2. Q2 = 0 when ‖h2 − h1‖R3 = h2R1

3. Q2 < 0 when ‖h2 − h1‖R3 > h2R1

These conditions are independent on the resistance R2. Now depending
on the evolution of the aperture widths, the following scenarios arise:

• Initially condition 1 is valid and remains so until breakthrough. Then
both flows are directed towards the confluence. At breakthrough the
resistance of the winning path along fractures 1 and 3 drops close to zero
(R1 ≈ R3 ≈ 0) and consequently the ratio Q2/Q1 becomes zero. MC is
operative, until Q2/Q1 > 0.1.

• Initially condition 1 is valid. But as fractures 1 and 3 open up condition 3
is achieved. As soon as that happens Q2 changes its flow direction. Then
MC is no longer effective, and depending on the values ofR2 breakthrough
occurs first via fracture 3 or fracture 2 solely by the action of nonlinear
kinetics.

• Condition 3 holds at t = 0. Then MC is not active from the very be-
ginning. Since under the action of nonlinear kinetics fracture 1 opens
more quickly than fractures 2 and 3 the condition 3 remains valid and
breakthrough occurs either via fracture 2 or 3.

If three fractures with entrance heads h join to a confluence into fracture
4 with head h = 0 at its exit, similar situations arise. Q1 is always positive,
assuring p1 = max(pi). Depending on the initial values of the fracture
resistances R1, R2, R3, R4 and their evolution in time Q2 and Q3 can take
both flow directions, either towards the confluence or opposite. If Q2 and
Q3 are positive, mixing of three solutions activates MC at the entrance of
fracture 3. If Q2 > 0 and Q3 < 0 or vice versa two solutions mix and MC
is active in fracture 4 and fractures 3 or 2, respectively. If both Q2 and
Q3 are negative higher order kinetics determine exclusively the evolution
of all aperture widths. Depending on the resistances, the pCO2 , and the
heads acting, breakthrough can occur along each combination of two of the
four fractures. Thus, there is always a winning pathway which does not
only depend on the geological setting (resistances and heads) but also on
the chemical compositions of the inflowing solutions. All these possibilities
exist also in two-dimensional networks, which we present in Sec. 4.2.3.
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3.5.5 CONCLUSION

Variations of pCO2 in the soil of the catchment area, different pathways of
solutions in the vadose zone, different soil structures etc., can cause different
chemical compositions of solutions entering the closed system, and upon
their mixing they affect mixing corrosion. As shown, mixing corrosion can
play an important role in the early karstification. A study on a simple
junction presented here showed that not a large variation in pCO2 is needed
for mixing corrosion to produce large reductions of breakthrough times of
the evolving conduits. It was shown that the reduction of breakthrough
time depends on the location of confluence and is largest at k = 0.5 ( see
Fig.3.31) . The reduction also increases with decreasing p2 and becomes
constant for p2 < 0.5 p1.

When discussing early karstification one also has to consider the geo-
chemical settings such as distribution of CO2 in the soil and the soil struc-
ture. Although MC is not a crucial factor for cave development it plays an
important role in the early stage of cave evolution.
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3.6 EVOLUTION OF A SINGLE FRACTURE WITH
CONSTANT RECHARGE

So far we have assumed a constant head driving the water through the
fracture. In this section we discuss another important element of more
complex settings, a fracture with a constant recharge. All the scenarios
and settings presented so far for the fracture with constant head, can also
be applied to the fracture with constant recharge. This is not the aim of
this section. Our goal is to present some very basic results which are new
with respect to what has been shown so far.

3.6.1 MODEL STRUCTURE

Fig. 3.40 shows the concept: a constant recharge dQ/dx = q, with calcium
concentration cin is introduced along the fracture. Prior to the recharge
region, the fracture carries initial flow Q0 with concentration c0.

Q ,c0 0

x x+dx

(Q +qx)c0 (Q +qx+qdx)(c+dc)0

(qc +F(c)P)dxin

q,cin

Figure 3.40: Basic parameters and mass conservation between x and x + dx in a single
fracture with a constant recharge.

3.6.2 NUMERICAL RESULTS

To obtain numerical results we proceed as in the fracture with constant head
conditions. But we use an adapted mass conservation equation. Instead of
Eq.3.5, the conservation of Ca2+ ions now demands:

(Q0 + qx)c + F (c)Pdx + cinqdx = (Q0 + qx + qdx)(c + dc). (3.79)

The numerical algorithm used in this case is slightly different to the one
used so far. The concentration changes due to the dissolution and to the
mixing with the inflowing water. Therefore, if c(x) is the concentration at

85



p

A fracture with constant recharge

the position x, c(x+ ∆x) is calculated by:

c(x+ ∆x) = cmix(x) +
F (cmix(x))P (x)∆x

qx
, (3.80)

where cmix(x) =
qxc(x) + q∆x cin

(x+ ∆x)q
.

There is no breakthrough in this case, since the flow rate is constant in
time. Termination of the calculation is thus ”user-defined”. Figure 3.41
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Figure 3.41: Profiles of aperture widths (a) and concentration (b) for the fracture with
constant recharge. a0 = 0.03cm, b0 = 100cm, Q0 = 0.1cm3/s, q = 1.5 · 10−4cm2/s,
c0 = cin = 1.5µmol/cm3. Profiles are taken in ky intervals. Dotted lines show the case
where surface-transport controlled dissolution is considered, full lines show the results
when only surface control is considered. Note the logarithmic scale in x.

shows the evolution of the aperture widths and concentrations along the
fracture for various time. Full lines represent the case where only surface
controlled rates were assumed, dotted lines present the case where diffu-
sion limited dissolution was also considered. The difference between both
cases is significant only close to the entrance, where the rates are diffusion
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controlled. Although including diffusion makes no difficulty in numerical
models, excluding it can be a big help on the way towards more general -
analytical results.

From the model runs we observe the following:

• Provided that the fracture is wide i.e. b � a, it is widened uniformly in
time and the widening does not depend on its initial aperture.

• The concentration initialy exhibits a fast rise to above 99% of its asymp-
totic value csat. We define xsat as the point in the fracture where c =
0.99csat.

• The fracture widths initially drop and than stay constant for x ≥ xsat.
• csat and xsat do not depend on the initial length and width of the fracture.
• There is no feedback mechanism since the hydraulic head is not constant,

but is assumed to be adapted to the offered recharge.

The evolution of the fracture with constant recharge is thus well described
by csat and xsat. How these depend on the specific parameters q and cin is
shown on Fig.3.42. It shows the dependence of xsat and csat on q for various
cin as denoted on the lines in µmol/cm3. Since csat is the asymptotic value
for x → ∞, xsat is taken at the point where x = 0.99 · csat. Full lines
present the case when only linear kinetics (cs = ceq) was assumed, dashed
lines present the results when also nonlinear dissolution rates (cs = 0.9ceq,
n = 4) are considered.

3.6.3 ANALYTICAL APPROXIMATIONS

To gain some more insight into the dependence of csat and xsat presented
in Fig.3.42, we try to get some analytical approximations. Multiplying the
terms in Eq.3.79 and neglecting the higher order differentials (dxdc) we get

dx

Q0 + qx
=

dc

q(cin − c) + F (c)P
. (3.81)

For a wide fracture, where P can be regarded as a constant, the equation
does not depend on the fracture aperture and is therefore constant in time.
The differential equation can be easily integrated for the case of linear
kinetics, where F (c) = k̃1(ceq − c) eith k̃1 = k1/ceq. In this case we obtain
basic integrals for x and c. The result yields:[
1 +

qx

Q0

]−(1+k̃1P/q)

=
qcin + k̃1Pceq − c(k̃1P + q)
qcin + k̃1Pceq − cin(k̃1P + q)

. (3.82)

Note that c0 was taken equal to cin. Some further algebraic ”gymnastics”
gives an explicit equation for c(x):

c(x) =
qcin + k̃1Pceq

q + k̃1P

[
1 − (1 + qx/Q0)

−(1+k̃1P/q)
]

+ cin (1 + qx/Q0)
−(1+k̃1P/q) . (3.83)
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If x → ∞ the term (1 + qx/Q0)−(1+k̃1P/q) vanish and an expression for csat
is obtained:

csat =
qcin + k̃1Pceq

q + k̃1P
. (3.84)

From Eq.3.83 we see that c(x) = csat when Q0 = 0.
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Figure 3.42: The dependence of xsat (a) and csat (b) on q for various cin (denoted on
the lines in [µmol/cm3]). In both cases Q0 = 10−3cm3/s. Other parameters are the
same as in Fig.3.41

The value of xsat can then be determined according to some criterion
which we choose, e.g. at ccrit = 0.99csat. From Eq.3.82 we obtain:

xsat =
Q0

q

[(
1− cin/cend
1− ccrit/csat

) q

q+k̃1P

− 1

]
. (3.85)

Note that xsat ∝ Q0.
Fig. 3.42 presents the dependence of xsat and csat on q. Full lines

show the case when only linear kinetics is assumed and represent directly
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the results from Eqs.3.84 and 3.85. Dashed lines show the dependence
when kinetic switches at cs = 0.9ceq to non-linear with n = 4, k4 = 4 ·
10−8mol/cm2s.

Whenever cin < cs the results with and without the switch of the ki-
netic order coincide as soon as q is large enough to keep the resulting
concentration csat below cs. Note, that q is not arbitrary but is limited by
the amount of precipitation which can occur in nature. Assuming direct
recharge of rain into the fracture, value q = 1 ·10−3cm2/s would correspond
to a precipitation rate about 300mm/y. Thus cases with q > 2 · 10−3 are
unlikely in nature and are here presented for completeness.

3.6.4 FRACTURE WITH A CONSTANT RECHARGE

AND VARYING GEOCHEMICAL PARAMETERS

In the case of the fracture with constant head conditions we discussed how
variations of geochemical parameters, such as kinetic konstants or CO2

content influence the early evolution. Here we present a few results for
the case when kinetic parameters n and kn change within the fracture (see
Sec.3.3) under conditions of constant recharge.

As in the constant head conditions, the rates and consequently the
widths change at the lithology boundary if the concentration csat is above
the cs. If csat < cs the lithology change makes no difference, since the first
order kinetic is active. If c(1)

sat > cs than the ratio between the rates on the
both sides of boundaries is equal to

F (KL)n1

F (KL)n2

=
kn1

kn2

(
1 − csat

ceq

)n1−n2
1−n1

(3.86)

Fig.3.43a shows the profiles of aperture widths when the nput concentra-
tion cin = 1.8µmol/cm3, other parameters are as in Fig. 3.41. Dissolution
rates and aperture widths at the boundary drop, but then they increase
behind the boundary and approach the asymptotic value. The reason for
this increase is that c

(1)
sat > c

(2)
sat, therefore the concentration of solution for

x > x
(2)
sat is lower than the concentration at the boundary.

In Fig.3.43b the kinetic parameters change from n = 8 to n = 4.
Other parameters are the same as in figure a. The aperture widths at
the boundary are boosted up. Then they drop to asymptotic value, since
the concentration beyond the lithology boundary increases and therefore
the dissolution rates and aperture widths decrease.

In both cases the fracture can be considered as two succesive fractures
with the initial flow and concentration Q

(1)
0 and c

(1)
0 for x < KL and Q

(2)
0 =

Q
(1)
0 + qKL, c(2)

0 = c
(1)
sat for X > KL, provided that KL > x

(1)
sat.
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Figure 3.43: Evolution of aperture widths for the fracture with a constant recharge
and lithology boundary. a) n1 = 4, n2 = 8, K = 0.5. b) n1 = 8, n2 = 4, K = 0.5.
First profile is taken at 10y, than every 2ky starting at 2ky. Q0 = 0.1cm3/s, q =
1.5 · 10−3cm2/s. Other parameters are tha same as in Fig.3.41.

3.6.5 CONCLUSION

The main result obtained in this section is the concept of a steady state:
Concentration along the fracture remains constant after some distance xsat
from the entrance. Almost entire fracture opens evenly and widens linearly
in time.

Fractures with constant recharge as discussed here are rather unlikely in
nature. Nevertheless, the concept of a fracture with the constant recharge
will be met in Chap.5 where we shall discuss the evolution in an unconfined
aquifer.
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4 THE EVOLUTION OF
TWO-DIMENSIONAL NETWORKS
UNDER CONSTANT HEAD
CONDITIONS

One-dimensional models are the key for understanding the processes act-
ing during early karst evolution. To predict how the spatial evolution and
the distribution of evolving conduits of early 3-dimensional karst depends
on the mechanical and geochemical parameters, we have to employ models
with higher dimensions. A first step forward are two-dimensional (2D) frac-
ture networks. The evolution of early karst in 2D networks under the con-
stant head conditions was discussed by Lauritzen et al.(1992), Groves and
Howard (1994a) (1994b) (1995), Dreybrodt and Siemers (2000), Siemers
and Dreybrodt (1998) and Siemers (1998). The reader is referred to the
work of Siemers and Dreybrodt (1998) and Siemers (1998), where the mod-
elling concepts used also in this work are explained in detail. In this chap-
ter we make a quick summary of the results presented in the works quoted
above and add some new results by including new geochemical parameters
such as CO2 sources and mixing corrosion.

4.1 BASIC PRINCIPLES OF MODELLING 2D
FRACTURE NETWORKS

To model early karstification of 2D fracture networks one needs:

1. Generating the fracture network with imposed boundary conditions.
2. Applying the dissolution-tranport model as presented in Chap.3.1 to the

fractures of the net. This includes calculation of the head difference and
dissolutional widening for each fracture.
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4.1.1 GENERATION OF 2D NETWORKS

There are several ways of generating the 2D fracture networks. The sim-
plest option is the regular rectangular (”brick”) network first presented by
Groves and Howard (1994a). This chapter upgrades the work of Siemers
and Dreybrodt (1998) who used percolation networks to approximate the
stochastic distribution of primary fractures in limestone.

THE GENERATION OF PERCOLATION NETWORKS

Fig.4.1a shows a bond percolation network on a square lattice. This is
generated the following way. Initially a square lattice of netpoints (sites) is
generated. The lines connecting the neigbouring netpoints are occupied by
fractures (open bonds) with probability p. Fig. 4.1b shows an excerpt of
the net shaded in figure a. The dots represent the netpoints. The full lines
represent the fractures (open bonds) and the dotted represent the closed
bonds.

Netpoint
Closed bond
Fracture (open bond)

a) b)

Figure 4.1: An example of percolation net with p = 0.5. a) Thick lines denote the
percolation backbone. Non-percolating clusters or dead ends of percolation backbone are
presented by the thin lines. b) Excerpt from the net, with netpoints and occupied and
non-occupied bonds marked by the full and dotted lines. See text.

Fractures generated this way form clusters of various sizes, depending
on p (Fig.4.1a). For each lattice type (e.g. triangular, square, honeycomb;
see Stauffer (1960) or Lee and Farmer (1993) for details) there is a critical
occupation probability pc where infinite clusters start to form. For the
square lattice presented here we use bond percolation 1 with pc = 0.5.

1Net can also be generated via site percolation procedure, where the occupation of the net-
points is determined statistically. Fracture is present if both netpoints on its sides are occupied.
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Therefore, taking a square net with p ≥ 0.5 a cluster of fractures exists
connecting the sides of the net which can transmit water.

All generated fractures can be classified into two classes:

1. Percolating fractures are connected to the entrance and to the exit
of the network by uninterrupted and self-avoiding pathways. They are
grouped into the cluster which is connected to the left and right boundary
of the network and thus they can carry flow. They are represented by
the thick lines in Fig.4.1a.

2. Non-percolating fractures do not carry flow within the network. They
are either parts of isolated clusters or dead ends. These are presented
by the thin lines in Fig.4.1b. Simple dead ends, i.e. fractures with no
connection or only one to neighbouring fractures are already excluded
from the figure.

During a process of network generation all the non-percolating fractures
are omitted by an iterative procedure.

THE BOUNDARY CONDITIONS

Fig. 4.2a shows a percolation net with p = 0.8 and the boundary conditions
imposed on it. These are set as follows:

• Hydraulic head hin at the left-hand side and hout = 0 at the right-hand
side of the net.

• Nonpermeable upper and lower boundary.
• Solution is entering the system with initial Ca2+ concentration c0 and is

in equilibrium with partial CO2 pressure p0
CO2

.

The initial aperture widths of the fractures can have any distribution. In
the presented runs all fractures have equal initial aperture widths a0 and
equal initial widths b0.

CALCULATION OF NETWORK EVOLUTION

To calculate the widening of each fracture in the network, the flow rate
and the concentration of solution entering it must be known as discussed
in Sec.3.1. Flow through the fracture connecting the node points i and j is
given by

Qij =
hi − hj
Rij

, (4.1)

where Rij is the resistance of the fracture, hi and hj are the heads at nodes
i and j. The calculation of the heads is based on mass conservation for
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No flow

No flow

c ,p0 CO2

c ,p0 CO2
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Q2

Q3

h =0outhin

q ,c3 3
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q ,c2 2
out

q ,c1 1
out

q ,c4 4
in

a) b)

Figure 4.2: a) Percolation net (p = 0.8) with imposed boundary conditions. Inputs are
on the left-hand side and outputs on the right-hand side of the net. The upper and the
lower boundaries are impermeable. b) Junction of four fractures. Mass conservation for
flow and ionic species is valid at all junctions. See text for discussion.

each node point (see Fig.4.1b)∑
Qin(i)−

∑
Qout(i) =

∑
j

Qij = 0, (4.2)

whereQin(i) is the flow rate towards node i and Qout(i) the flow rate away
from it. Qij is the flow rate through the fracture connecting nodes i and j
and Rij its resistance. Eqs.4.1 and 4.2 give a set of linear equations for the
unknown heads. This can be solved by standard methods. A good choice
is a preconditioned CG iteration method for sparse matrices (see (Stewart
and Leyk, 1994)).
Once the flow rates are known, the dissolution widening is calculated by
the following procedure:

1. Apply the one-dimensional dissolution-transport to all the fractures con-
nected to the input points at the left boundary. Calculate the new profile
of these fractures for the time ∆t.

2. Select the nodes where the concentration of the inflowing solution is
known and apply the transport-dissolution model to the fractures drain-
ing the water from them. See App.A for some technical details on this
point.

3. Calculate the new profiles for these fractures and the concentrations at
their exits. In all presented model runs complete mixing 2 at the nodes
2See (Philip, 1988), (Hull and Koslow, 1986) for more details on mixing at the fracture inter-

section. Our measurements on a physical model of a fracture intersection show that combination
of complete mixing and stream routing would be the best choice. Further knowledge on this topic
is required. Siemers and Dreybrodt (1998) and Siemers (1998) demonstrated the dependence of
the network evolution on the mixing model applied
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is assumed. The concentration of the solution at node i is than given by
(see also Fig.4.1)

ci =
∑

j Qjc
out
j∑

j Qj

. (4.3)

Qj is the flow rate of a fracture carrying the water to the node i and coutj

its concentration at the exit.
4. Repeat 2 and 3 until the new profiles for all conduits have been obtained.
5. Calculate the new head distribution according to the new fracture resis-

tances and repeat 1-4 for the next timesteps until the onset of turbu-
lent flow. Laminarity of the flow is assured through calculation of the
Reynolds number for each fracture at each timestep.

4.1.2 RESULTS FOR THE BASIC CASE

The set of figures in the next few pages shows the various aspects of the
evolution of the percolation network. Fig.4.3 shows the aperture widths
in units of the initial aperture width a0. Fig.4.4 shows the flow rates in
units of the maximum flow rate Qmax in the net . Note that that Qmax

increases in time. Therefore the same line thicknesses represent different
absolute values at different time steps. Fig.4.5 shows the distribution of the
dissolution rates in units of F (cs) = 4 · 10−12mol/cm2s. Fig.4.6 shows the
contour map of the head distribution. The figures present four snapshots of
the net at different timesteps: at 1ky, at 3ky, at 5.5ky and at breakthrough
at 5.81ky. The parameters of the net are given in the caption of Fig.4.3.
The percolation probability is 0.8. The net has three inputs and three
outputs marked by A,B and C and A∗, B∗ and C∗. The solution has the
same chemical properties at all inputs.

• Situation at 1ky is presented by figures a in Figs.4.3-4.6. 3 The frac-
tures close to the inputs A,B and C are in the region of high dissolution
rates and have therefore been widened considerably. The distribution of
flow rates is relatively uniform, except in the vicinity of inputs and out-
puts. Dissolution rates drop continuously from the left to the right side.
Opening of the fractures close to the inputs has caused the penetration
of high hydraulic head (h > 0.999hin) into the net. The vertical distri-
bution of hydraulic heads and dissolution rates is uniform, except close
to the inputs and outputs.

• At the midpoint at 3ky shown by figures b in Figs.4.3-4.6, the path-
ways marked by 1, 2 and 3 on Fig.4.3b have progressed deeper into the
network. In this region the flow and high dissolution rates are already
focused to the fractures comprising these pathways. More to the right,
3Discussion of the presented results will be time oriented. Therefore the reader should consider

the figures of all parameters at certain time, e.g. Figs.4.3-4.6 a for the state at 1ky.
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Figure 4.3: Aperture widths of the fractures in a percolation network in units of a0

at different stages of its evolution . Times are denoted at the figures. The size of
the net is 900m × 900m, grid size is 30m, p = 0.8. Other parameters: a0 = 0.03cm,
b0 = 100cm,∆h = 50m, c0 = 0, ceq = 2µmol/cm3, k1 = 4 · 10−11 mol/cm2s,n = 4,k4 =
4 · 10−8 mol/cm2s. Inputs and outputs are denoted on figure a by A,B,C and A*, B*,
C*, respectively.

in the part where no considerable widening has occured, the distribution
of flow rates is still uniform. In this part the dissolution rates have also
increased. The regions of high hydraulic heads (lighter areas in Fig.4.6)
have penetrated deeper, causing high gradients in the right hand side of
the net.

• Close to the breakthrough at 5.5ky (figure c in Figs.4.3-4.6) pathway
1 starting at input A almost reaches the output A*. Dissolution rates
and flow rates are high along this pathway. The pathway 3 connecting
C and C* is a bit less favourable, but has still evolved considerably.
The looser of the ”breakthrough race” is pathway 2 connecting B and
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<0.01<0.1 <0.2 <0.3 <0.4 <0.5 <0.6 <0.7 <0.8 <0.9 <=1<0.005Q/Qmax

Figure 4.4: Evolution of flow rates. Line thicknesses represent the magnitude of flow
rates in units Q/Qmax, where Qmax is the flow through the fracture with the highest
flow rates. a) Qmax = 5.36 cm3/s, b) Qmax = 10.12 cm3/s, c) Qmax = 30 cm3/s, a)
Qmax = 172 cm3/s.

B*. The region of high hydraulic heads caused by an efficient widening
of pathways 1 and 3 reaches almost to the outputs preventing the flow
along the less developed pathway 2 (BB*).

• The breakthrough situation at 5.81ky is shown by figure d in Figs.4.3-
4.6. At 5.81ky breakthrough occurs along pathway 1, which carries most
of the flow. Pathway 3 has also evolved close to the breakthrough, while
pathway 2 has not evolved any further. High dissolution rates act along
both evolved pathways. Note that some flow with high dissolution rates
also leads from pathway 1 and 3 to the output B*. Consequently close
to the output A* a set of vertical fractures is evolving in the direction
of output B*. The breakthrough of pathway 1 ends our simulation with
the onset of the turbulence.
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Figure 4.5: Evolution of dissolution rates. The line thickness represent the dissolution
rates in units F/Fmax, where Fmax = F (cs) = 4 · 10−12 mol/cm2s.

Probably the most important result of 2D models is that the time evolution
of flow is in a good accordance with the one dimensional models. Fig.4.7
shows the flow through each input and output as it evolves in time. The
flow through inputs A and C increases continuously due to the feed-back
mechanism as in the 1D model. Flow through input B initially increases,
but starts to decrease after 2ky due to the hydraulic head redistribution
caused by efficient widening of the pathways 1 (AA*) and 3 (CC*) (see
discussion on the Figs.4.3-4.6). Note that the output B* attracts also the
water from the inputs A and B, therefore the flow rate there also increases
and shows breakthrough behaviour.
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Figure 4.6: Distribution of the hydraulic heads. Contour map. Value on the isolines are
given in centimeters. On figure a the positions of inputs and outputs are marked.
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Figure 4.7: Evolution of flow rate at the inputs and outputs of the percolation net
presented in Figs.4.7. The inputs A,B,C and outputs A*,B*,C* are depiceted at figures
a on Figs.4.3-4.6.
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SOME GENERAL CONCLUSIONS

Of course we cannot give general conclusions based on the one single case
shown here. Therefore the reader is referred to the work of Siemers and
Dreybrodt (1998) for details. There it is shown that the breakthrough times
of 2D networks are in a good agreement with Eq.3.34, when the length
L is the length of the winning pathway. When the initial distribution
of pathways is such that there is significant difference in their length or
head, the pathway which exhibits a minimal breakthrough time is also
the winning one. When the resistances of the pathways are close to each
other, one must also consider the distribution of dissolution rates which is
determined by the chemical parameters and mixing rules used in the model.
The length of the pathways and therefore also TB decreases with increasing
percolation probability p.
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4.2 EVOLUTION OF 2D NETWORK IN VARIOUS
GEOCHEMICAL SETTINGS

We discussed several geochemical mechanisms which considerably affect the
evolution of a single fracture (See Secs.3.1, 3.3, 3.4 and 3.5). These effects
were discussed from the viewpoint of breakthrough time. In this section we
introduce similar scenarios into the percolation networks, and we will pay
more attention to the evolution of conduit patterns.

The effect of varying lithology on the evolution of 2D percolation net-
work was discussed by Siemers (1998).

4.2.1 THE INFLUENCE OF INPUT SATURATION

RATIO ON THE EVOLUTION OF FRACTURE

NETWORKS

As shown for the single fracture (See Sec.3.1) the feedback mechanism is
switched off for high input saturation. The next step is to examine the effect
of the initial saturation state on the breakthrough time and the pattern
evolution in fracture networks.

Fig.4.8 shows the aperture widths at the onset of turbulence for the net
presented in Figs.4.3-4.6 but with initial concentration close to equilibrium;
at all inputs c0/ceq = 0.95 in Fig.4.8a, and c0/ceq = 0.98 in Fig.4.8b.

a)

 t=1.28E+004y

A

B

C

A*

B*

C*

1

2

3

b)

 t=4.02E+004y

Figure 4.8: Aperture widths at the onset of turbulence for the net presented in Fig.4.3
with a) c0/ceq = 0.95 and b) c0/ceq = 0.98

Comparing Figs.4.8a, b and Fig.4.3d we observe, that the evolved pat-
tern is more maze-like if c0/ceq is closer to 1. In Fig.4.3d two relatively
unbranched pathways evolved. The set of pathways marked by 1 on the
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Fig.4.8a is already more branched and extends also to the output B*. The
situation on Fig.4.8b is quite different. One still observes preferential path-
ways, but they are hidden within the complex network of evolved conduits.

This observed behaviour can be generally explained by the following
reasoning: Consider two arbitrary pathways within the evolving net. Path-
way A with length LA and flow rate QA and pathway B with LB and QB.
Assume that they both drain water from the same node point. Therefore
they have the same initial saturation ratio cin/ceq. As shown in Sec.3.1
dissolution rates at the exit of these pathways can be taken as a measure
telling how differently the pathways evolve. From Eq.3.19 we find the ratio
F1(L1)/F2(L2) as

FA(LA)
FB(LB)

=
(

1 + α(1 − cin/ceq)n−1L2
A

1 + α(1 − cin/ceq)n−1L2
B

) −n
n−1

. (4.4)

Parameter α contains all the parameters which are equal for both path-
ways. Eq.4.4 shows that the ratio FA(LA)/FB(LB) drops with rising cin/ceq.
Therefore the pathways are more equivalent at higher cin/ceq. If cin → ceq
the ratio goes to 1. Consequently the network consisting of many possible
pathways shows more maze-like pattern if cin/ceq is close to 1.

To conclude the discussion on the influence of c0/ceq, Fig.4.9 presents
the evolution of flow rates at the inputs and outputs for the both cases
given in Fig.4.8. For co/ceq = 0.95 the behaviour is similar to that in

0 2 4 6 8 10 12100

101

102

103
a A

A*

B

B*

C

C*

Q
[c

m
3
/s

]

t[ky]
0 10000 20000 30000 40000 50000100

101

102

103

b

A

A*

B

B*

C

C*

Turbulence

Q
[c

m
3
/s

]

x[cm]

Figure 4.9: a) The evolution of flow rates at inputs and outputs for c0/ceq = 0.95. b)
The evolution of flow rates at inputs and outputs for c0/ceq = 0.98. Symbols represent
the inputs and outputs as marked in Fig.4.8a

Fig.4.7, except for the longer TB. Also note the revival of flow at the input
B close to the breakthrough. For c0/ceq = 0.98 the feedback is switching
off already before turbulence occurs.
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4.2.2 MIXING CORROSION AND CO2 INPUTS IN 2D

FRACTURE NETWORKS

In this section we extend the results obtained in Sec.3.4 and 3.5 by intro-
ducing different chemical compositions at the input points and introducing
CO2 inputs within the network.

THE MODEL MODIFICATION

At any point in the net the chemical composition of the solution is de-
scribed by the concentration of CO2 and Ca2+, i.e. the (CO2, Ca2+) pair
which belongs to some CO2 −Ca2+ line connecting the point (CO0

2, 0) and
(CO2eq, Ca2+

eq ).
When all the (CO2, Ca2+) pairs of solutions entering at various input

points belong to the same line as used in the runs presented so far, each
(CO2, Ca2+) point of all mixed solutions in the net also belongs to this
line. Therefore only one equilibrium concentration is valid for the whole net.
Fig.4.10 looks rather complex. It presents a scenario where the (CO2, Ca2+)
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Figure 4.10: Chemical pathways of solutions with different chemical compositions. Mix-
ing of solutions belonging to different CO2−Ca2+ lines produces new solutions belonging
to a new CO2 − Ca2+ line.

pairs of solutions entering the net belong to different CO2 − Ca2+ lines.
Solution 1 enters the closed system a (CO0

2(1), 0), solution 2 at (CO0
2(2) =

CO0
2(1), Ca2+(2)), solution 3 at (CO0

2(3), 0). Note that the pathway of
solution 2 can be interpreted as solution 1 which has dissolved some amount
of calcium Ca2+(2) in the open system conditions. It is chosen so that the
pathway of solution two in the closed system coincides with that of solution
3. As these solutions mix, the (CO2, Ca2+) pairs of the mixed solutions
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belong to new CO2 −Ca2+ lines. Thick lines 4-10 in Fig.4.10 represent the
pathways of mixed solutions. The dashed lines point to the Ca2+

eq for these
curves. The number of the ”higher generation” CO2 −Ca2+ lines depends
also on the head and flow distribution in the net which defines how much
the solutions with different chemical compositions mix.

Various pCO2 at the inputs or CO2 inputs in the net cause the (CO2, Ca2+)
pairs of the solution in the net to belong to different lines. Therefore we
have to track the CO2 concentration in the net. When assuming complete
mixing, for any node point the following relations are valid:

[Ca2+] =
∑

Qi[Ca2+]i∑
Qi

and [CO2] =
∑

Qi[CO2]i∑
Qi

. (4.5)

To trace the equilibrium concentration in the net we track the [CO2] the
same way as the calcium concentration (see App.A) and calculate ceq at
each node point by solving Eq.2.6.

4.2.3 MIXING CORROSION IN 2D FRACTURE

NETWORKS

FIRST RESULTS: SIMPLE MIXING SCENARIO

As shown in Sec.3.5, when two solutions with points (CO2, Ca2+) on differ-
ent lines mix, MC occurs. We have shown that the effect of MC depends
on the distance of the points to equilibrium. and the distance between the
CO2 − Ca2+ lines of the mixing solutions.

Fig.4.11 shows three nets at breakthrough. The only difference between
the parameters of these nets is pCO2 at the lower input marked by B in
Fig.4.11c. In Fig.4.11a pCO2 at both inputs is 0.05 atm and TB = 16.8 ky.
No mixing corrosion (MC) is present in this case. Two competing pathways
have developed with the upper one winning.

On Figs.4.11b and c, pCO2 at the input B is 0.03 atm and 0.003 atm,
with breakthrough times of 8.8 ky and 5ky respectively.

The network in Fig.4.11 is modified so that the upper and lower region
can be divided into two parts: an upper one connecting the input A to
output A* and a lower one connecting the input B to the output A*. These
two parts have one confluence denoted by 1 in Fig.4.11c, and a region of
confluences close to the exit denoted by 2. These are the regions where
solutions from both inputs mix and consequently MC is active.

At the early stage of karstification MC is active at both locations.
Widening of fractures is enhanced there such that the resistance of the
developing conduit system is lowered significantly in the region between
2, and the output A*. Therefore the upper branch developing from the
input A towards the output A* has a shorter effective length by about 20%
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a)

 t=1.68E+004y

b)

 t=8.8E+003y

c)

 t=4.3E+003y

A

B

A*

1
2

a/a0 <1.5 <2 <4 <8 <16 <32 <64 <128 <256 <512 <1024 >1024

Figure 4.11: The breakthrough situation of the net with two inputs and one output. In-
puts, output and mixing regions are marked on fig c. a) pCO2(A) = 0.05atm, pCO2(B) =
0.05 atm . b) pCO2(A) = 0.05 atm, pCO2(B) = 0.03 atm. c) pCO2(A) = 0.05 atm,
pCO2(B) = 0.003 atm. Other chemical and geometrical parameters are the same as in
Fig.4.3.

from its very early evolution. Since its TB is related to this effective length
by Eq.3.34 one expects a reduction of TB by about one half. Due to MC
widening occurs at confluence 1 and a conduit starts to grow from there.
This however remains isolated, since the conduits growing from the lower
input cannot reach it until the breakthrough of the upper branch.

The lower branch at breakthrough is much less developed than that
in Fig.4.11a for two reasons. First, it has less time to grow. Second, the
equilibrium concentration of its input solution is reduced by about 25%,
owing to the reduced pCO2 . Therefore its TB is expected to increase by
about 50% (cf. Eq.3.34). This behaviour is more pronounced in Fig. 4.11c,
where MC is more effective causing further reduction of breakthrough time
and larger aperture widths of the isolated conduit system (TB = 5ky). The
evolution of the lower branch consequently is inhibited significantly.
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FURTHER RESULTS AND DISCUSSION: THE SNAPSHOTS OF THE
EVOLUTION

To gain some more insight into these processes Fig.4.12 shows the evolu-
tion of a more complex net with further connections close to the inputs.
pCO2(A) is 0.05 atm and pCO2(B) is 0.003 atm.The colours depict the equi-
librium concentrations of the mixed solutions. Red symbolizes the equi-
librium concentration achieved in a closed system for pCO2 = 0.05 atm
(ceq(A) ≈ 2.1µmol/cm3), dark blue is related to the solution with pCO2 =
0.003 atm (ceq(B) = 0.17µmol/cm3). Mixing of these solutions creates new
values of ceq (see Fig.4.10) between the two extremes and activates MC,
∆ceq (See Fig.3.36 in Sec.3.5) is largest when equal flow rates are mixed,
indicated by green. Light blue indicates mixing, where ceq is closer to
ceq(B), and yellow where it is closer to ceq(A). Both colours exhibit similar
values of ∆ceq and therefore similar strength of MC. The line thicknesses

a)

 t=300y

A

B

A*

b)

 t=1.7E+003y

c)

 t=2.5E+003y

d)

 t=4.2E+003y

ceq(min) ceq(max)

Figure 4.12: The net with PCO2(A) = 0.05 atm and PCO2(B) = 0.003 atm at four
different times: a) t = 0.3 ky, b) t = 1.7 ky, c) t = 2.5 ky and d) t = TB = 4.2 ky. Other
parameters are the same as in Fig.4.3.

106



p

2D network in various geochemical settings

a)

 t=2.5E+003y

A

B

A*

b)

2

1

c)

 t=4.2E+003y

d)

<0.01<0.1 <0.2 <0.3 <0.4 <0.5 <0.6 <0.7 <0.8 <0.9 <=1<0.005Q/Qmax

Figure 4.13: a) Flow rates for the net from Fig.4.12 at 2.5ky, Qmax = 20cm3/s. b)
Hydraulic heads at 2.5 ky. c) Flow rates at 4.2ky, Qmax = 174cm3/s. d) Hydraulic
heads at 4.2ky.

depict the aperture widths in the same scale as in Fig.4.11.
At the onset of evolution at 0.3 ky (figure a) two regions of flow are

established. The red one carries solution from the input A and the dark
blue area from the input B. MC is active at their boundaries (green, yellow).
Only little fracture enlargement has occurred so far.

After 1.7 ky (figure b) enlargement of fractures becomes visible in the
regions of MC. Due to the change of the hydraulic heads the flow pattern
changes such that more water from the upper input invades into blue terrain
of figure a. The region of strongest MC is therefore replaced by a region
with ceq closer to ceq(A) (yellow area) and furthermore a part of the dark
blue terrain is replaced by green (strongest MC) and light blue. It should
be noted at this point, that the flow rates (not shown here) are evenly
distributed at the onset of karstification. But as time passes the ratio of
the flow rates into the upper input to that into the lower one increases
steadily. The colours also indicate the mixing ratio of these solutions, such
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that from red to dark blue the contribution of water from the upper input
decreases.

After 2.5 ky the upper conduit has penetrated towards the exit and
MC has created an extended system of isolated conduits, fed mainly by
water from the upper input. The area draining the lower input is further
reduced. Under such conditions the shortest pathway from the upper input
to the output is diverted toward the pathway along the conduits enlarged
by MC and breakthrough occurs along these at 4.2ky. At this time flow
from the upper input has conquered almost almost the whole net and MC
region is restricted only to the vicinity of the lower input. The winning
pathway is completly different to that without MC. This is identical to
the one on Fig.4.11. Summarizing, we state that besides the effects of
MC at the simple confluence presented in Sec.3.5, mixing corrosion in two-
dimensional networks causes the redistribution of flow paths and formation
of the isolated pathways. Fig.4.13 presents the flow rates and hydraulic

a)

 t=0y

A

B

C

A*

B*

C*

b)

 t=1E+003y

c)

 t=2E+003y

d)

 t=3.9E+003y

ceq(min) ceq(max)

Figure 4.14: Basic net from Figs.4.3-4.6 with. pCO2 at the input A and C is 0.05 atm and
at the input B 0.003 atm. Aperture widths and equilibrium concentrations at different
timesteps as denoted.
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heads at 2.5ky and at the breakthrough. Due to the opening of the fractures
caused by the MC, the region of lower (h < 4000cm) hydraulic heads,
marked by 2 on Fig.4.13b, has evolved. The region of high hydraulic head
1 is attracted to it due to the increased gradient. Instead of forming the
pathway along the shortest way to the output (AA*), the solution entering
input A is diverted along the fractures connecting regions 1 and 2.

Fig.4.14 shows the evolution of the net presented in Figs.4.3-4.6. pCO2 is
0.003 atm at the input B and 0.05 atm at the inputs A and C. Initially the
regions of influence of three inputs are well separated (red,dark blue, red)
with mixing zones in yellow, light blue and green at the boundaries (figure
a). As the time progresses - figures b and c at 1 and 2 ky - more flow from
the input A and C invades into the region of input B and the mixing region
is retreating towards the inputs. The effect of MC is already visible, since
the isolated fractures evolved in the mixing zones are creating the shortcuts
for the flow. At 2 ky as presented in figure d the conduit system evolving
from the input C is joining an isolated system caused by the MC. Figure
d shows the resulting pattern at the breakthrough at 3.9 ky. As we see,
it differs considerably to that of Fig.4.3 where the mixing corrosion is not
present. In the settings presented the MC caused a new effective pathway
leading from the lowermost input.

ANOTHER SCENARIO WITH ACTIVE MC : SAME pCO2 BUT
DIFFERENT Ca2+ CONCENTRATION AT THE INPUTS

Up to now the input solutions were calcium free, i.e. c0 = 0 and different
CO2 concentrations at different inputs were the reason for the MC. As men-
tioned in Sec.3.5 and shown in Fig.4.10, MC occurs whenever (CO2, Ca2+)
pairs of solutions entering the system belong to different CO2−Ca2+ lines.

This is also the case when the dissolution history of solutions in open
system differs (see line 1 and 2 in Fig.4.10). In this case solutions enter the
closed system with same pCO2 , but with different calcium concentrations.

Fig. 4.15 shows the evolution of such a net. The net is identical to
that from Fig.4.11. Both solutions are entering the closed system with
pCO2 = 0.05 atm. Input 1 has an initial Ca2+ concentration 3.3µmol/cm3.
This corresponds to 90% of ceq in the open system for pCO2 = 0.05 atm.
The solution entering at the input 2 has no calcium.

The evolution of the net is similar to the one presented in Fig.4.11.
Conduits evolving at the mixing points A and B are representing shortcuts
for the flow, changing the evolving pattern with respect to basic case (Fig.
4.11a) and reducing the TB. Due to the high c0/ceq at the upper input,
the evolving pattern between the upper input and output shows higher
complexity, i.e. is more maze-like due to the reasons discussed in Sec.4.2.1.
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a)

 t=3E+003y

A

B

A*

b)

 t=4E+003y

c)

 t=4.3E+003y

ceq(min) ceq(max)

Figure 4.15: The evolution of aperture widths and equilibrium concentrations for the
case where both solutions enter with the same pCO2 , but different calcium concentrations.
pCO2 at the both inputs is 0.05 atm. The calcium concentration at the upper input is
3.3µmol/cm3 and set to zero at the lower input.

4.2.4 THE EFFECT OF CO2 SOURCES IN 2D

NETWORKS

THE CONCEPTS

To simulate CO2 inputs in 2D percolation networks we define a point, line
or a region located in the net with a fixed concentration of CO2. Fig.4.16
shows the chemical pathways of solutions when CO2 is introduced in such
a way. The initial solution with (CO0

2, 0) evolves along pathway 1, reaches
the CO2 input region, where its CO2 concentration rises (marked by 2) and
follows a new CO2−Ca2+ line. Solutions at the CO2 inputs can have various
saturation ratios and can thus (3 and 4) be shifted to different CO2−Ca2+

lines. The presence of CO2 sources also induces mixing corrosion. We are
not going to show and discuss the wide variety of cases when CO2 inputs
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Figure 4.16: Chemical pathways of solutions in the presence of a CO2 inputs

are introduced into the network. We point out just a few cases.

THE RESULTS

Fig.4.17 shows three stages in the evolution of a net, where a line source of
CO2 is introduced. The pCO2 in the region marked by a shaded rectangle
in Fig.4.17a is set to 0.04 atm. pCO2 = 0.05 atm at the inputs A and B.
Otherwise the net is identical to the one presented in Fig.4.11.

Fig.4.17a shows the distribution of aperture widths and equilibrium
concentrations after 1 ky. The shift of ceq due to the CO2 inputs causes a
growth of the conduits in the lower right part of the net. Close to the output
the solutions from both inputs mix. Their different chemical composition
initiates mixing corrosion and therefore the growth of conduits (green) in
the mixing zone.

At 1.9 ky (figure b), the set of conduits initiated by the CO2 input and
mixing corrosion join, and offer a shortcut for the pathway connecting the
input B and the output. The breakthrough along this pathway occurs at
2.4 ky (Fig.4.17c). Fig.4.17d shows the distribution of hydraulic heads at
2ky (figure b). Note the high hydraulic gradient in the region of CO2 input.

Fig.4.18 presents the evolution with a localised CO2 input (denoted
by shading). The other parameters are the same as for the net presented
in Fig.4.3. Figure a shows the net at 1.5ky. A set of conduits has evolved
between the CO2 input and the output. Conduits also evolve due to mixing
corrosion at the boundaries of the region with different ceq. Fig.4.18b shows
the situation at the breakthrough (2.3ky). The pathway from the middle
input has joined the pathway evolving from the CO2 input to the output.
The drop of head along this pathway also attracts the pathway leading from
the uppermost input.
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ceq(min) ceq(max)

Figure 4.17: Net with a line input of CO2. In the region shaded in figure a the pCO2

is fixed to 0.04 atm. a,b,c) Aperture widths and equilibria at 3 different time steps as
denoted on the figures. Fig c shows the breakthrough scenario. d) The distribution of
the hydraulic heads at 2ky.

a)

 t=1.5E+003y

A

B
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C*

b)

 t=2.2E+003y

Figure 4.18: Two steps at 1.5ky (a) and at the breakthrough (b) in the evolution of the
net with constant pCO2 = 0.05 atm region. This region is marked by the gray shade in
figure a. Otherwise the net is identical to the one presented in Figs.4.3-4.6.
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5 TOWARDS MORE COMPLEX
MODELS: THE EVOLUTION OF
EARLY KARST IN THE DIMENSION
OF LENGTH AND DEPTH

5.1 INTRODUCING NEW CONCEPTS

In the models presented so far were calculated under constant head con-
ditions1 . Only flow in prominent fractures with initial aperture widths of
several tenths of a millimetre was considered.

The concepts of matrix flow and typical conductivities in early karst
were introduced in Chap.1. This chapter gives a more comprehensive pic-
ture of early karstification by considering also the flow and dissolution in the
matrix which is represented by a dense fracture system. Besides this, the
more ”natural” boundary condition of constant recharge to the aquifer is
introduced. The modelling domain remains two-dimensional, representing
a vertical section of a limestone plateau.

5.2 THE MODELLING CONCEPTS

5.2.1 THE MODEL AND ITS PARAMETERS

Fig.5.1a shows a vertical section of a limestone plateau downcut by the
valley on its right-hand side. The massif is dissected by fractures of various
initial apertures. Prominent fractures are shown in the massif. An enlarge-
ment shows a net of fine fractures which represent the ”matrix” part of an
aquifer. Fig.5.1b shows a simplified version of the cross-section representing
the modelling domain discussed in this chapter.

1Exception is the one in Sec.3.6, where a constant recharge was assumed.
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Figure 5.1: a) Schematic representation of a cross-section through the limestone plateau.
At the top a combination of constant recharge and constant head conditions can be ap-
plied. Thick gray lines show impermeable boundaries. The lower picture is an enlarge-
ment showing the parameters of the fracture systems. b) The model aquifer with its
boundary conditions.

The model plateau is rather small, 200m long and 30m high2. The
matrix conductivity is represented by a rectangular net of fine fractures
with aperture widths a ≈ 0.005 cm. Prominent fractures with aperture
widths in the order of few tenth of a millimetre can be incorporated into
the matrix. A recharge of 450mm/year is evenly distributed at the surface
of the plateau and ”offered” to the aquifer.

The left-hand side, the base and the lower right-hand side are assumed
impermeable. This is marked by thick solid lines in Fig.5.1b. The hydraulic
head hout at base level is set to zero. The cliff on the right represents
a seepage zone where the water leaks from the aquifer. Constant head
conditions can also be applied on the top , e.g. an allogenic river flows over
the massif. Tab.5.2.1 presents the new parameters used in the model and
their typical values.

2The primary goal was to present a larger scale model, but this remains a future job due to
numerical problems and limited computational power.
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Name Sign Typical value Units
Aperture width of prominent fractures ap 0.02 cm
Width b 100 cm
Aperture widths of horizontal ”matrix” fractures ah 0.007 cm
Spacing between horizontal ”matrix” fractures sh 50 cm
Aperture widths of vertical ”matrix” fractures av 0.006 cm
Spacing between vertical ”matrix” fractures sh 200 cm
Recharge to the aquifer Qin 450 mm/year
Length of the massif L 200 m
Thickness of the massif D 30 m

Table 5.1: Basic parameters and their ”standard” values

5.2.2 BASIC EQUATIONS AND BOUNDARY

CONDITIONS FOR GROUNDWATER FLOW

To get a better understanding of the following results, we give a quick
review of water flow in porous aquifers. The flow of water in porous media
is described by Darcy’s law and the continuity equation. Darcy’s law relates
the velocity (i.e. flow density) of the water to the hydraulic gradient:

7v = −K∇h, (5.1)

whereK is the hydraulic conductivity tensor. The hydraulic head3 is explic-
itly defined as the sum of the kinetic energy, the pressure and the potential
energy. The kinetic energy can safely be neglected for the cases of our
interest, therefore we obtain:

h =
p

ρg
+ z. (5.2)

Neglecting the non-diagonal values of K, the following relations are valid
for the Cartesian coordinate system:

vx = −Kx

∂h

∂x
, vy = −Ky

∂h

∂y
, vz = −Kz

∂h

∂z
. (5.3)

The continuity equation for incompressible fluid gives ∇7v = 0. Coupling
it with Eq.5.1 one obtains:

∂

∂x

(
Kx

∂h

∂x

)
+

∂

∂y

(
Ky

∂h

∂y

)
+

∂

∂z

(
Kz

∂h

∂z

)
= 0 (5.4)

Note that for an isotropic conductivity the equation becomes Laplace’s
equation, i.e. ∆h = 0.

The following boundary conditions apply to our model :

1. Impermeable boundary: This condition is satisfied by setting ∂h/∂n =
0, where n is the normal direction with respect to the boundary.
3Also groundwater head, piezometric head or groundwater potential
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2. Boundary condition at the water-table: h = z.
3. Boundary condition at the seepage face4: h = z.

Our model is discrete, i.e. flow is defined by a set of linear equations
which relates the heads at the node points to the resistivities of the fractures
connecting the node points. The solution is obtained in the same way as
described in Chap.4.

Eq.5.4 is, except for the most simple cases, solved numerically. An
ansatz for the finite differences model (Bear, 1979) gives a similar set of
equations as we get for the discrete fracture system. In fact, if conductivities
are taken as

Kx = Kh =
ρga3

h

12ηsh
and Kz = Kv =

ρga3
v

12ηsv
, (5.5)

one obtains a set of equations identical to that of a discrete fracture system.
The conductivities given in Eq.5.5 can also be interpreted as conductivities
of a discrete fracture system, averaged over the surface between the two
fractures. Therefore when taking a domain with a large number of fractures,
its ”continuum” conductivity is given by Eq.5.5.

Our model implies an unconfined aquifer, i.e. an aquifer with a water
table (WT) 5 which divides a saturated phreatic and an unsaturated vadose
zone (see Fig.5.1). Recharge is infiltrating through the surface and the
vadose zone down to the phreatic zone at the WT. The position of the WT
depends on recharge.

5.2.3 NUMERICAL PROCEDURE

The general procedure is similar to the one described in Chap.4. For each
timestep the flow within the saturated zone is calculated and the transport
dissolution model is applied to the fractures.

To obtain the flow through the fractures, the position of the WT must
be known, since it defines the boundary conditions for flow and separates
the saturated zone from the unsaturated one.

The position of the WT and the height of the seepage face is calculated
by the following procedure:

1. An initial guess for the WT is assumed.
2. A recharge defined by precipitation is equally distributed to the points

of the assumed WT.
3. The heads of all the net-points below and at the assumed WT are cal-

culated with the boundary conditions defined by the assumed WT and
seepage face.
4The condition at the water-table (abbrevated as WT) and seepage face is h = z + patm/ρg.

The second term is acting on all faces and can thus be subtracted
5Expression free surface or phreatic surface is also used
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4. The heads of the points on the WT are checked for the boundary condi-
tion. Their head must, within a given error, equal to their elevation. In
our case this condition yields h = z± sh/2. If the condition for the point
is valid, the WT is kept there, otherwise the WT is either shifted to the
point above if h > z + sh/2 or to the point below if h < z − sh/2. Thus
a new approximation for the WT is obtained.

5. Procedure 1-3 is iterated until all the points on the assumed WT fulfil
the condition h = z ± sh/2.

Once the WT and the seepage zone are obtained, the flow through the
fractures in the phreatic zone is calculated and the transport-dissolution
model is applied. This is done in the same way as described in Sec.4.1. In
this case the widening of each fracture in a timestep is not calculated by
the finite difference procedure, but according to the widening rate at the
exit:

ai(t + ∆t) = ai(t) + 2γF (L, t). (5.6)

F (L, t) is the dissolution rate at the exit of a fracture calculated by Eq.3.20.
This approximation is not crude, since most of the fractures have high
initial saturation ratios and the rates along them do not change much.
Results obtained by using the finite differences procedure for each fracture
are almost identical. The reason for the approximation is purely technical
since it saves calculation time and memory usage.

Chemical parameters used are those given in Tab.3.1. During percola-
tion through the vadose zone, the solution already attains some saturation
state. This is taken into account by taking c0 between cs and 0.97ceq, so
that the initial concentration rises linearly with the depth of the water-
table. The choice of the parameter c0 is rather arbitrary. It influences the
evolution of an aquifer, but does not change the results conceptually. A
broad sensitivity analysis has not yet been done.
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5.3 RESULTS

5.3.1 NO PROMINENT FRACTURES: THE

EVOLUTION OF A FINE FRACTURE SYSTEM

CONSTANT RECHARGE

The aquifer consists only of a fine fracture system to which the condition of
constant recharge at the top is applied. No prominent fractures are present
in the modelling domain.

Fig.5.2a shows the situation at 50y which is practically identical with

a)

t=50y

b)

t=5ky

c)

t=10ky

d)

t=15ky

a/a <2 <4 <8 <16 >16
0

Figure 5.2: Evolution of an aquifer with evenly spaced fine fractures and constant
recharge. Distribution of fracture widths after 50y (a), 5ky (b), 10ky (c) and 15ky
(d). The colours represent the widths of the fractures in units a(t)/a0, where a0 is the
initial width of vertical fractures (a0 = ah(t = 0)). Fractures designated by full squares
represent the phreatic zone, those by open angles the vadose zone. The water-table is
thus clearly presented.
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the initial one. The phreatic zone is indicated by fat fracture lines, and
the vadose zone by thin interrupted ones. In this way the position of the
WT is clearly presented. The colours show the fracture aperture widths
increasing from dark blue to red as denoted in the figure. a0 is the initial
width of the vertical fractures. Fig.5.2b shows the situation after 5ky. WT
has dropped due to the increasing fracture widths in the aquifer.

After 10ky the WT reaches the lowest possible output fractures. This
is presented in Fig.5.2c. A conduit develops by continuous dissolution
along the base level and grows headwards (Fig.5.2d) until it reaches the
left boundary after 20ky. Inspection of the colours in Fig.5.2 reveals that
the hydraulic conductivity increases by about 2 orders of magnitude, leav-
ing a highly permeable vadose zone as is observed in nature (cf. Eq.5.5).
Dissolutional widening is most active close to the water-table at all times,

a)

 t=5ky Q   = 2.73cm /s3
max

<0.01 <0.05 <0.1 <0.5 <1Q/Qmax

b)

t=5ky

F/F <1e-4 <1e-3 <0.01 <0.1 >0.1max

Figure 5.3: . a) Flow rates in units of Q/Qmax at 5ky. The fracture with the highest flow
rate has a ratio of Q/Qmax equal to 1. Most of the flow is concentrated to the permeable
fringe at the top of the phreatic zone. Confer to Fig.5.2b. b) Dissolution rates in units
F/Fmax where Fmax = 4 · 10−12molcm−2s−1 corresponding to bedrock retreat of few
10−3cm/year. The maximal dissolution rates are active close to the water-table and
drop rapidly with depth.

since the solution quickly approaches equilibrium when penetrating into
the net. Therefore close to the WT a narrow region of higher permeabil-
ity is established which attracts flow. In Fig.5.2a a small light blue fringe
indicates this zone. Later the fringe becomes wider and is composed of
fractures with apertures up to 16a0. With increasing time the water-table
drops, leaving behind the vadose region of increased conductivity. The
phreatic zone below still has low hydraulic conductivity. In such an aquifer
most of the flow is directed along the water-table. Fig.5.3a shows the flow
rates through the fractures at 5 ky and clearly illustrates (green, yellow, red
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Figure 5.4: a) Profiles of the aperture widths of the horizontal fractures at various
times along a vertical cross-section marked by an arrow in Fig.5.2c . A front of increased
permeability with fracture widths of several hundreds of a cm penetrates downward. This
front is marked by arrows. Numbers give the time in ky. b) Evolution of the aperture
widths of the conduit at base level (cf. Figs.5.2c,d). Numbers at the curves denote time
in ky. Initial width is 7 · 10−3cm. The conduit starts to grow headwards at 7.5ky and
shows a linear increase of its width in time. The dashed vertical line marks the position
of the vertical profile shown in Fig.5.4a.

fractures) that the flow is restricted close to the water-table. Dissolution
rates shown in Fig.5.3b also exhibit a maximum close to the water-table
and drop significantly below. As the water-table drops dissolution becomes
active in the lower parts of the aquifer. Once the water-table has reached
a stationary position dissolution stays active close to it and large conduits
can grow. This corresponds to the ideal water-table cave in the model of
Swinnerton (1932) and Rhoades and Sinacori (1941) which requires a high
and even fissuring of the rock.

To illustrate the distribution of fracture widths in the net Fig.5.4a shows
the aperture widths of the horizontal fractures in relation to the distance
from the top of the aquifer for various times. The distribution of fracture
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widths, taken along column 30, as indicated by an arrow in Fig.5.2c is shown
in Fig.5.4a. At time zero all fractures show initial widths of 0.007 cm. Since
dissolution occurs only close to the water-table a region of widened fractures
with an average width of about 0.03 cm propagates into the rock down to
the position of the actual water-table.

This high permeability characterizes the vadose zone. Further dissolu-
tion by water trickling down this zone is not considered in our model. After
10ky the zone of widened fractures has dropped further until after 15ky the
water-table has reached the lowest horizontal fracture at the seepage face
(cf. Fig.5.2d). From then on this fracture widens continuously as depicted
by the curves. A similar behaviour is observed for the vertical fractures,
not shown here.

Fig.5.4b shows the evolution of the horizontal fracture widths along the
final water-table. The spring is at the right-hand side. As soon as the WT
has reached the spring, a conduit starts to grow headwards from the spring
into the aquifer. As the intersection of the water-table and the horizontal
fracture moves headwards the recharge is drained by the spring side part
of the fracture, and the conduit widens at an almost constant rate. This
explains the linear profiles. Finally when the water-table coincides with the
entire fracture, we have the case of a one-dimensional conduit with evenly
distributed recharge presented in Sec.3.6.

The presented concept of karst evolution shows that the evolution of
highly permeable aquifers including large conduits at the final position of
the water-table is possible even in the case of an initially evenly fractured
limestone without prominent fractures. Such prominent fractures were a
necessary ingredient of the models presented so far in this and also in other
works.

COMBINED CONDITIONS: CONSTANT RECHARGE AND
CONSTANT HEAD

Often constant head boundary conditions and those of constant recharge
exist simultaneously. This for example is the case when allogenic rivers
are present. Fig.5.5 shows such a case where a constant head equal to the
elevation at the upper left boundary is imposed (see Fig.5.5a). Other pa-
rameters are equal to those in Fig.5.2. Constant recharge is offered to the
aquifer everywhere else. Fig.5.5a shows the water-table and the distribu-
tion of the fracture aperture widths 1ky after the initial state. In the region
of constant recharge the water-table drops as in the previous case. Dissolu-
tion occurs only in a small banded region close to the WT as illustrated by
Figs.5.5a, b, c. In the constant head region, the water-table cannot drop
below the surface, therefore the head difference along the WT increases.
A permeable fringe along the WT offers an effective pathway draining the
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a)

 t=1kyhin

b)

 t=1.75ky

c)

t=2ky

d)

 t=2.1ky

a/a <2 <4 <8 <16 >16
0

Figure 5.5: Evolution of a fine fracture system with combined constant recharge and
constant head conditions at the top. The constant head region is marked in figure a. The
WT is fixed due to the constant head. Dissolution is mainly active in the fringe close to
the water-table. The arrows on figure c denote the position of the profiles presented in
Fig.5.6.

water from the constant head region to the output. The feedback mecha-
nism along this pathway leads to the breakthrough at 2.1 ky. A wide zone
of high conductivity has been created which carries flow from the constant
head area. Fig.5.7 shows the total discharge as a function of time. The
arrows indicate the flow rates at the timesteps from Fig.5.5.

This resembles a typical breakthrough behaviour such as observed for
one-dimensional conduits or for nets under constant head conditions as
presented in Chaps.3 and 4. To obtain same quantitative information on
the widths of the fractures Fig.5.6 exhibits the distribution of widths along
a vertical and horizontal cross section through the aquifers as indicated in
Fig.5.5c for various times.
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Figure 5.6: Distribution of the fracture widths for a horizontal and vertical cross-section
of the aquifer as indicted by arrows in Fig.5.5a. a) Widths of the vertical fractures in
the vertical cross section for various times indicated in ky. The region of maximal widths
corresponds to the red area in Fig.5.5. b) Widths of the horizontal fractures in the
horizontal cross-section for various times. The small peak at about 30m corresponds to
the vertical channel which develops at the border between constant head and constant
recharge regions. Note that the increase of aperture widths accelerates in time.
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Figure 5.7: Flow through the aquifer of Fig.5.5 as a function of time. Typical break-
through behaviour is observed. The arrows indicate the times of Fig.5.5a,c and c.
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5.3.2 AQUIFERS WITH PROMINENT FRACTURES

Although we pointed out that the conduits can grow also without prominent
fractures, it is well known that caves in natural karst are guided along the
prominent bedding planes and joints (Ford and Williams, 1989). Therefore
we will extend the model by first adding a single prominent fractures into
the ”matrix” and later introducing a network of prominent fractures.

MATRIX WITH A PROMINENT FRACTURE UNDER CONSTANT
RECHARGE CONDITIONS

We first include one prominent bedding plane, with a width of 0.025cm into
the aquifer of at base level. Fig.5.8 illustrates the position of the water-table
at various times. The bedding plane indicated by a grey line extends along
the entire length of the aquifer. In comparison to Fig.5.2a a significant
drop of the initial WT below the surface of the aquifer is observed, since
the prominent horizontal fracture receives vertical flow and conducts it to
the exit.
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Figure 5.8: Position of the water-table at various times for an aquifer with one prominent
fracture with an aperture width of 0.025cm. The position of fracture is marked by the
grey line. The numbers on the curves indicate time in ky.

After 5ky the WT has reached this fracture and at 10ky it coincides
completely with it. The evolution of the aquifer is generally similar to
that in Fig.5.2 but much faster. We have also modelled a case where a
vertical fracture of 0.025 cm aperture width is added to the aquifer so that
it intersects the horizontal one. This does not have any significant influence
on the evolution of the aquifer.
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A SIMPLE PATHWAY OF PROMINENT FRACTURES

Now a pathway of few prominent fractures with widths of 0.04 cm is added
to the matrix. It penetrates below base level and is terminated there after
a loop as shown in Fig.5.9. The pathway does not connect inputs to the
outputs.

Initially the WT is high as depicted by the dashed line in Fig.5.9a, which
illustrates the aquifer at 5ky. A relatively high hydraulic head acts along
the pathway, which widens similarly as under constant head conditions. As
the WT drops the head and the effective length of the pathway drop, since
the upper part is becoming vadose. These two effects partially compensate
each other. Water leaking from the pathway into the the matrix at the
right-hand end of the loop creates a permeable region spreading in the
direction of the output. It takes about 10ky until the WT reaches the base
level (Fig.5.9b).

a)

5ky

b)

10ky

c)

13.5ky

d)

30ky

a/a <2 <4 <8 <16 >16
0

Figure 5.9: Evolution of an aquifer including a pathway of prominent fractures (ap =
0.04cm). The pathway is composed of two vertical and one horizontal part and can be
well seen on the figures. It does not connect the inputs to the ouputs, since it terminates
in the matrix.
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Figure 5.10: Aperture widths along the horizontal cross-section marked by the arrow
in Fif.5.9c. The cross section contains the horizontal part of prominent fracture between
60m and 100m.

Fig.5.10 shows at various times the distribution of fracture aperture widths
of the horizontal fractures along the cross-section containing the horizon-
tal part of the prominent pathway. Until 10ky the prominent horizontal
fracture widens in time similar as under constant head conditions. After
10ky, when the WT is at the base level, it widens linearly in time. The
breakthrough behaviour for this case is quite complex. Since the pathway
ends in the matrix, breakthrough could occur if the permeable zone right
to the pathway reaches the output. This could happen only if the high
hydraulic head conditions last long enough, i.e. if the WT is kept above
the base level for longer time. Increasing permeability causes the drop of
the WT and annihilates its own progress.

After 13ky a conduit has propagated at the base level headwards from
the spring (Fig.5.9c). At the left-hand side of the vertical fracture another
conduit grows headwards also at the base level (Fig.5.9b). Since the loop
of the prominent fracture below base level has evolved to a width of about
3mm, this loop effectively drains water flowing along base level from the
left hand side. After about 15ky years (not shown here) the entire flow is
directed along the water-table at the left side. From there it flows through
the short-circuiting loop and then again along the water table to the spring.
A conduit continues to grow along this stable flow path.

A PROMINENT FRACTURE IN THE CONSTANT HEAD REGION

If prominent fractures connecting the region of constant head to the out-
put are present, the evolution of such fractures is close to the evolution of
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a single fracture under constant head. On the other hand a breakthrough
behaviour along the water-table is also present (see Fig.5.5), thus a com-
petition between these two pathways is to be expected.

Such a situation is shown in Fig.5.11, where a vertical and horizontal
fracture of 0.03 cm aperture widths connects the region of constant head to
the spring.

a)

t=0.3ky

b)
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a/a0 <1.5 <2 <4 <8 <16 <32 <64 <128 <256 <512 <1024 >1024

Figure 5.11: a) Distribution of fracture widths at breakthrough for the matrix with two
additional prominent fractures with an aperture width of 0.03 cm connecting the region
of constant head to the output at base level (t=300 years). b) Profiles of the aperture
along the prominent fracture in the aquifer for various times indicated by the numbers
on the curves (given in ky). Input at 0m , spring at 190m.

The other parameters are equal to those shown in Fig.5.5. Fig.5.11a il-
lustrates the distribution of aperture widths after 300 y when breakthrough
through the prominent fractures occurs. The small fringe of enlarged frac-
tures close to the water-table indicates that the evolution of this pathway
needs a much longer time (cf. Fig.5.5). Fig.5.11b depicts the width profiles
of the single conduit along the prominent fracture for various times. After
the breakthrough, constant recharge conditions must be assumed for the
prominent fracture, draining all the recharge in the former area of constant
head. Correspondingly the water-table will decline in a similar manner
to the situation in Fig.5.2, leaving a vadose zone of increased conductiv-
ity. The further evolution of the conduit will be determined by a constant
recharge to it.
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5.3.3 AQUIFERS WITH A NET OF PROMINENT

FRACTURES

Up to now we have added only a few simple prominent fractures into the
matrix represented by the dense fracture system. To create a more realis-
tic karst aquifer we now superimpose a net of prominent fractures to the
matrix. The following procedure is used:

• Divide the net of fine fractures into a coarse net of 5 by 5 dense fractures
• With a random procedure assign to each fracture of the coarse net an

aperture width of a prominent fracture ap. If the random number chosen
for each fracture is smaller than p, the fracture has an aperture width ap,
else its aperture is that of the fine net fractures.

This initial scenario is similar to the approach of a double continuum
model of Clemens et al. (1997a),(1997b), (1999) but it avoids calibration
parameters, which are difficult to specify. It is also close to the approach
of Kaufmann and Braun (1999b) who model the initial aquifer by a super-
position of a prominent fracture net to a rock matrix with homogeneous
initial conductivity.

The most important difference in our approach is that dissolutional
widening is regarded in both parts of the aquifer, whereas Clemens et al.
and also Kaufmann and Braun disregard dissolution in the dense fractures
or matrix respectively.

CONSTANT HEAD AND CONSTANT RECHARGE CONDITIONS

The boundary conditions for the case in Fig.5.12 are the same as in Fig.5.5:
constant head at the left-hand upper side and constant recharge on its right-
hand side. Fig.5.12a shows the widths close to the onset of the evolution
after 200 years. After 1ky a complex net of conduits has developed along
the prominent fractures. The region of constant head becomes connected
to the area of constant recharge by increasing conductivity, caused by both,
widening of the fine fractures and also connection to the prominent ones.
Consequently the water-table rises. Close to the water-table a region of
higher conductivity connects the prominent fractures to the seepage face.
This change of conductivity and hydraulic heads enhances the evolution of
the conduits along the prominent fractures.

After 1.2 ky breakthrough occurs, with prominent fracture widths in
the order of a few millimetres. To illustrate the distribution of fracture
widths as they evolve in time, Fig. 5.13 depicts these along a horizontal
cross-section as indicated by an arrow in Fig.5.12c. The widening of the
fracture accelerates by feedback and consequently the discharge through
the aquifer shows the characteristic breakthrough behaviour. This event
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a)

t=0.2kyhin

b)

t=1ky

c)

 t=1.2ky

a/a <2 <4 <8 <16 >16
0

Figure 5.12: Evolution of an aquifer with a percolation network of prominent fractures
appended to the dense fracture network. The initial aperture width of prominent frac-
tures is 0.02cm (light blue). Other parameters are the same as in Fig.5.5. a) 0.200ky, b)
1ky, c) 1.2ky.

terminates the early evolution of the aquifer. The constant head condition
breaks down and must be replaced by constant recharge. Flow becomes
turbulent. Nevertheless, the complicated pattern of vertical and horizontal
conduits and a high permeability region close to the spring will design the
future structure of the mature karst aquifer. It should be stressed at that
point, that constant head conditions are crucial for the evolution of such
complicated structures as shown in Fig.5.12.
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Figure 5.13: 11 a) Profiles of horizontal fracture widths along a horizontal cross-section
as marked by the arrow in Fig.5.12c. b) Profiles of vertical fracture widths along this
cross-section. Times in ky are given by the numbers on the curves.

THE CONDITIONS OF CONSTANT RECHARGE

Another case with a percolation net of prominent fractures is one with a
constant recharge solely. The WT drops to base level as in all other cases
of constant recharge. What makes the case interesting are the complex
loops below base level evolving during the drop of the WT . The basic
mechanism is similar to that for a simple pathway with a loop below the
base level in Fig.5.9. The only difference is that in this case there are more
loops, creating a more complex flow pattern. This is shown by Fig.5.14.
It shows an aquifer with a network of prominent fractures (p=0.8) with
aperture widths of 0.04 cm. To get a more pronounced pattern, recharge is
increased to 700mm/year. Fig.5.14a represents the fracture widths after
30 ky. Fig.5.14b depicts the flow rates and consequently the flow path at
that time. These conduits which continue to grow below the water table
are similar to those in Fig.5.9, but more complex.

TIME DEPENDENT BOUNDARY CONDITIONS: DOWNCUTTING
OF THE CLIFF

In nature the boundary conditions are changing during the evolution of
a karst aquifer. The precipitation rate Q, the chemical parameters of the
inflowing solution and also the hydrological boundary conditions may alter.
All these variations can also be applied to the model presented. We are
going to leave most of this for the future, and present a few cases where
the base level of an aquifer is downcut during the evolution.

In a first scenario we assume that a ”sudden” incision of a valley lovers
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a)

t=30ky

b)

t=30ky Q/Q =4.39cm /smax
3

a/a <2 <4 <8 <16 >16
0

Figure 5.14: Aquifer with a percolating net of prominent fractures (ap = 0.04cm).
Annual precipitation is 700 mm/year. a) Distribution of fracture widths after 30ky.
Conduits grow along the base level and along the phreatic loops. Note the change in the
colour code with respect to other figures. The widths designated by red are above 0.5cm.
The dashed line depicts the initial WT. b) Distribution of flow rates at 30ky.

the base level. This is presented by Fig.5.15. The model is the same as
used in Fig.5.14 but the position of base level is kept at 15m during the
first 10ky and than it is downcut to 25m immediately. In Fig. 5.15a, which
shows the situation at 9.8ky, a water-table cave has developed and as in
Fig.5.14 the system of conduits evolves below the base level.

After the downcutting the WT adopts to the new base level in a short
time. This is presentes in Fig.5.15b. After 11ky (Fig.5.15b) a new water-
table cave is already evolving. Between both base levels the conductivity
is relatively small since the WT has dropped fast due to the phreatic loops
which have evolved prior to downcutting.

Probably more realistic than the step downcutting is a gradual down-
cutting. Such a scenario is shown on Figs.5.16. The initial base level is
almost at the top of aquifer and is being lowered in steps of two nodes
(1m) every 5ky. The mechanisms are similar to those for the step downcut-
ting. The formation of phreatic conduits below base level forces the WT
to adapt promptly to the temporary base level. Fig.5.16a and b show the
aquifer at 6ky and 12ky, respectively. The vadose zone exhibits a relatively
high permeability6 since the region of fast widening at the WT was grad-
ually lowered together with the slow downcutting. A slower downcutting
produces higher permeability in the vadose zone.

6Note (once more) that permeability of the vadose zone is only the relict of dissolution when
the zone was still saturated and that the dissolution in vadose region is not considered
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a)

t=9.8ky

b)

t=11ky

a/a <2 <4 <8 <16 >16
0

Figure 5.15: Evolution of an aquifer with a net of prominent fracture under constant
recharge condition with step downcutting of the base level.

a)

t=6ky

b)

t=12ky

a/a <2 <4 <8 <16 >16
0

Figure 5.16: Evolution of an aquifer with a net of prominent fracture under constant
recharge condition with gradual downcutting of the base level.

THE CASE OF LINEAR KINETICS

When discussing the evolution of a single fracture we have stressed the
difference between non-linear and linear dissolution kinetics. The question
arises, how does the aquifer we have just presented evolve if only linear
kinetics acts? First we have to note, that the approximation with the
widening by the exit rate is questionable here. In Sec.3.1.4 we stressed
the importance of diffusion in the calculation with linear rate law. We
also showed that the approximation with the exit rates gives wrong results.
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a)

a/a0t=5ky

a/a <2 <4 <8 <16 >16
0

b)

F/Fmax

F/F <1e-4 <1e-3 <0.01 <0.1 >0.1max

Figure 5.17: The case of linear kinetics. Fracture widths (a) and dissolution rates (b)
at 5ky. The region of widening is restricted only to the WT.

Nevertheless, we present an example where only a linear rate law is applied,
since it nicely demonstrates what happens if the penetration lengths are
short.

This is also shown in Fig.5.17. The narrow fringe of high dissolution
rates is even more bound to the water-table, so the fractures below the WT
practically do not experience any widening. Therefore the drop of the water
table is very slow, caused only by widening of fractures at the WT. In other
words we can say that the result of linear kinetics is ”surface denudation”
of limestone at the water-table. The water-table drops very slowly in time
and becomes steep close to the seepage zone. The steep water-table causes
the failure of the algorithm which searches its position. For this reason the
later stages are not shown - one more task for the future.
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6 CONCLUSION AND FURTHER
PERSPECTIVES

6.1 SOME BASIC RESULTS OF THIS WORK

Half of this work deals with the evolution of a single fracture under con-
stant head conditions. This topic has been well discussed in literature,
but it appeared that some important scenarios were not considered or were
underestimated in the models presented so far. The evolution of the frac-
ture changes dramatically if the parameters defining the dissolution rates
change within the fracture. A change of the kinetic order or CO2 inputs
cause a considerable effect on breakthrough times. These effects are not
only dependent on the magnitude of these changes, but also on the position
in the fracture where they take place. Mixing of solutions with different
chemical composition also belongs to this context; it is shown that mixing
corrosion can contribute considerably to the initial karstification.

A deep understanding of the evolution of a single fracture is crucial for
understanding the results of model runs on 2D fracture networks. In these,
the chemically and mechanically most favourable pathway (the one with
the lowest breakthrough time) wins the breakthrough race. The break-
through behaviour of pathways in 2D networks is similar to that in single
fractures. Nevertheless, the winning pathway is hard to predict once addi-
tional parameters like mixing corrosion and CO2 sources are added to the
model.

Chap.5 presents the evolution of a karst aquifer in its length and depth.
Although most difficult to model, the basic results of these simulations are
clear and easy to interpret. An absence of prominent fractures results in
the evolution of water-table caves. In the presence of prominent fractures
the competition between these and the fractures close to the water-table
occurs. The results of the model support the empirical theories presented
in the introduction.
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6.2 FUTURE WORK

There is still a wide gap between the presented models and real karst sys-
tems. The difference between Fig.1.3 and Fig.1.1 in the introductory chap-
ter points to this gap and to the main tasks for the future. With regard to
our models these are:

1. To extend the model to turbulent flow conditions. This has already been
done by the other modellers (see Howard and Groves (1995), Kaufmann
and Braun (1999a), Clemens et al. (1997a)). After turbulent flow sets
in, the head distribution changes within the fracture network. According
to Groves and Howard Howard and Groves (1995) and Kaufmann and
Brown Kaufmann and Braun (1999a), evolution under the turbulent flow
conditions results in a more maze-like pattern of conduits.

2. To develop 3D models. The models presented are 2D sections of karst
aquifers. The next step is to add a third dimension to the model presented
in Chap.5.

3. To introduce more realistic and time-dependent boundary conditions.
These should include uplifting, downcutting, variation of precipitation
rates, hydraulic heads, geochemical conditions etc.

4. To introduce flow and dissolution in the vadose zone.

By gradually adding these new elements, one could ”construct” a nu-
merical karst aquifer from the basic principles and understand its nature
and behaviour. One could numerically investigate the properties of such
aquifers and compare them to field results obtained on the real aquifer.

More complex models could also reveal the the evolution of karst sur-
face landforms such as solution dolines, cone and tower karst etc., since
the evolution of these features is closely connected with the evolution of
subsurface flow in karst aquifers.

6.2.1 A QUICK LOOK INTO THE FUTURE: DYE

TRACING IN NUMERICAL AQUIFERS

For a ”taste” we present the results of ”dye tracing” in a 2D percolation
network. We will perform a numerical tracing experiment in the network
presented on Figs.4.3-4.6 in Sec.4.1. To put this in the frame of this work
the tracing will be done at three different stages of the evolution; at 1ky,
at 3ky and at the breakthrough.

We are solving the following problem. Consider a pulse of a dye intro-
duced into the network at some point at time t = 0 (note that this is local
time at some stage of the evolution of the network and not the time from
the onset of the evolution). What we are looking for is the appearance of
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the dye at some other point in the network, i.e. its time distribution there.
In the case presented here the dye is introduced at input A as denoted on

Fig.6.1 and observed at the inputs A*, B*, C*.
We apply a particle tracking technique to calculate the response to

the tracer input. A similar procedure was used by Moreno et al.Moreno
et al. (1988) and Moreno and Tsang Moreno and Tsang (1991) to simulate
the tracer transport in a single fracture with statistical distribution of the
aperture widths. The procedure is done the following way: at input A, a
pulse comprising a large number of particles is introduced at time t = 0.
The pathway of each particle is determined statistically according to the
distribution of flow; at each node a particle enters one of the fractures
draining the flow from the node. The probability that a particle enters
some fracture i is given by:

P (i) = Q(i)/
∑
j

Qj, (6.1)

where Qi is the flow from the node to the fracture i and
∑

j Qj is the whole
flow from the node.

Each particle comes to one of the outputs A*, B* or C*, depending on
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Figure 6.1: Particle tracking on a 2D percolation network at various stages of its evolu-
tion. On left hand side is the flow distribution in the network presented in units Q/Qmax

where Qmax corresponds to the fracture with the highest flow rate. Arrow on figure a
denote the input point for the ”dye”. The evolution of this net is discussed in Sec.4.1 and
presented on Figs.4.3-4.6. The graphs on the righ hand side represent the distribution
of particles as they arrive to the outputs A* (black lines), B* (gray lines) and C*(open
circles). Note the logarithm scale for the number of particles.

its pathway. The residence time in the net for a particle also depends on
its pathway and is given by

Tn(in → out) =
∑

i

ti =
∑

i

L(i)Ā(i)/Q(i), (6.2)

where ti is the transit time for the fracture i, defined by the length of the
fracture L(i), its average cross-section Ā(i) and flow rate. The sum over i
goes along all the fractures which belong to the pathway. At each output
a certain distribution of particle arrivals ∆N/∆t is recorded.

Fig.6.1 shows the flow distribution in the network at three stages of its
evolution (as in Fig.4.4). Graphs on the right show the time distribution of
particles at the outputs for the network at this stages. Arrivals at output
A* are denoted by black lines, arrivals at B* by gray lines and arrivals to
C* by open circles.

At 1ky the flow is quite evenly distributed, therefore particles take many
pathways of comparable probability. The first particles arrive at the out-
puts after 400h, the peak of arrivals is between 500 and 600h and the last
particles arrive after 1000h. At 3ky the flow on the lefthand side concen-
trates to the winning pathway but remains quite evenly distributed on the
righthand side. Distribution of particles at the outputs is more cumulative,
since most of the particles take the most probable - winning - pathway
on the lefthand side, but are spread to different pathways after the flow
becomes more evenly distributed. At breakthrough more than 99% of the
particles are travelling along the winning pathway AA*. Therefore they
have the same resident time.
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Conclusion

The net can be considered as a linear filter and results presented by the
graphs on Fig.6.1 as its kernel functions. A response to any input function
f(t) can be obtained by convolving the kernel function and the function
f(t).

Even a simple case like the one presented gives a complex ”tracing”
results. Further work on more complex model is required, so that the
results could be compared with the one obtained in nature. An question
arises whether the tracing results could be used to estimate the state of
maturity of karst aquifer.

6.3 NEED FOR COOPERATION

Future work demands a close cooperation between modellers, field hydrol-
ogists and speleologists. The latter can provide realistic geologic scenarios
to the modellers who can transform these into results which help to under-
stand processes in karst systems.

An extremely important job for the future is further investigation of dis-
solution rates in karst environments. As shown, the parameters of the rate
equation play a crucial role in the evolution of karst aquifers. Data on disso-
lution rates are limited with respect to temperature and pCO2 and also with
respect to the presence of foreign ions and other aggressive agents. Further
knowledge on dissolution kinetics for other karst rocks is also required - re-
cent laboratory experiments on gypsum reveal non-linear dissolution rates
also for this mineral giving a new view on karst evolution in gypsum areas.
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A THE TRACING OF
CONCENTRATION IN 2D NETWORKS

In Chap.4 the numerical procedure for the calculation of 2D networks was
briefly discussed. Here we present an important technical detail. We discuss
how the Ca2+ concentration and, when required, also the CO2 concentra-
tion is traced in 2D models presented in this work.

To calculate the widening of each fracture at any timestep, the concen-
tration of Ca2+ at its input node is required. Suppose that a fracture is
draining the water from the node i. If complete mixing is assumed, the
concentration at the node is given by

ci =
∑

j Qjc
out
j∑

j Qj

. (A.1)

Qj is the flow rate of the fracture carrying the water to the node i and
coutj its concentration at the exit. As we see, the exit concentrations of all
the fractures draining the water into the node is required, before widening
of the fractures leading from the node starts. Therefore it is important to
chose the right sequence of calculation. In the models presented here the
following procedure was used:

1. Order all the nodes according to their hydraulic heads.

2. Start at the nodes with the highest hydraulic head. These are at the
input boundary of the net where the concentration is given as an input
parameter.

• Search for the fractures which drain the solution from these nodes.

• Do the transport-dissolution procedure (widening) on these frac-
tures.

3. Go to the node which follows in the head sequence.

• Search for the fractures which drain the solution into the node and
those leading the solution from the node. Fractures leading into the
node have all been widened in step 1, so their output concentrations
are known.
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Conclusion

• Calculate the concentration at the node using Eq.A.1.
• Widen all the fractures leading from the node.

4. Continue down the head sequence to the next node.

• The same procedure and the same reasoning as in step 2 is valid also
for this node and all the nodes which follow in the head sequence.

5. Terminate the procedure when the nodes with the lowest hydraulic heads
at the output boundary are reached.

h cmax, 0

hmin

hmin

h cmax, 0

h cmax, 0

h>hi

h>hi

hi

Figure A.1: A schematic presentation of a 2D net with few nodes and fractures connect-
ing them. Widening sequence follows the sequence of the hydraulic heads at the nodes.
In this way the concentration at each node is defined at the time when the widening of
the fractures leading from it starts.
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3. Gabrovšek, F. and Dreybrodt, W., A model of early evolution of karst
conduits affected by subterranean CO2 sources. Environmental Geology,
39: 531-543,2000.
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5. Gabrovšek, F. and Dreybrodt, W., A comprehensive model of the early
evolution of karst aquifers in limestone in the dimension of length and
depth. Accepted for publication in Journal Of Hydrology .
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Abstract

Basic processes governing the early evolution of karst aquifers are discussed
by use of numerical models based on field observations on properties of karst
aquifers. Basically three different models are presented and discussed: a
single fracture, a two-dimensional fracture network and a model of a vertical
cross-section of a limestone plateau.

The time-scale of early karst evolution is discussed by a model of a
single fracture in limestone under constant head conditions. The flow and
dissolution rates are coupled by a feed-back mechanism which leads to
breakthrough, an abrupt increase of widening in a short time span. The
breakthrough time is taken as a measure of intensity of subsurface karstifi-
cation. Assuming an even widening of the fracture by the dissolution rates
at its exit, an analytical approximation for the breakthrough time is given
which defines all basic parameters governing the karstification. The ap-
proximation and the numerical models give the same dependence of break-
through time on these basic parameters. It is shown that the breakthrough
time is inversely proportional to the dissolution rates at the bottleneck, the
point, where the dissolution rates are minimal.

Few scenarios where the geochemical conditions in the fracture vary
are presented. Change of the kinetic order at the lithology boundary or
change of the equilibrium concentration due to the CO2 inputs affect the
breakthrough time considerably. The magnitude of these changes and their
position in the fracture determine the change of the breakthrough time.

A junction of two fractures joining into a third one is presented to dis-
cuss the effect of mixing corrosion on early karstification. Different chemical
compositions of the solutions at the confluence trigger mixing corrosion and
accelerate karstification. Mixing corrosion is most active if the flow rates
through both affluent fractures are comparable and solutions at the junc-
tion are close to equilibrium. This is particularly valid at the very early
stage of conduit development. Mixing corrosion reduces the breakthrough
time up to a few times.

The models of two-dimensional fracture networks give additional infor-
mation on the spatial development of karst conduits. Siemers and Drey-
brodt Siemers and Dreybrodt (1998); Siemers (1998) showed that the break-
through times in 2D percolation networks show essentially the same depen-
dence on the basic parameters as in a single fracture. A system of compet-
ing conduits connecting inputs and outputs evolves. The evolution is most
progressive along the pathways which exhibit the shortest breakthrough
times.

Similar geochemical scenarios as for the single fracture are discussed also
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for the 2D networks. The discussion is focused on the pattern development.
Mixing corrosion arising from the different pCO2 at the inputs, induces
the growth of isolated conduits in the mixing zones. This conduits cause
the redistribution of hydraulic heads and initiate the formation of new
preferential pathways. Similar effects are observed in the models where the
sources of CO2 are introduced into the network.

A model of a vertical cross-section of a limestone massif is presented
to discuss karst evolution in the dimensions of length and depth. The ini-
tial aquifer consists of a network with evenly spaced fine fissures (≈ 50µm
aperture widths). A constant recharge (450mm/y) is applied to the to the
plateau on the top. The aquifer is unconfined, thus a water-table divid-
ing the vadose and the phreatic zone is present. Most of the flow and
highest dissolution rates are located close to the the water-table. Due to
the increasing permeability in the water table drops leaving a region of
highly permeable vadose zone behind. Once the water-table reaches the
base level, a conduit start propagate from the spring into the aquifer. Ad-
ditionally a simple pathway or a percolation network of prominent fractures
(several 100µm) can be added. Feed-back mechanism is active along the
conduits growing along these fractures, but becomes suppressed due to the
dropping water-table. If constant head conditions are also present, the
breakthrough occurs either along the highly permeable zone close to the
water-table or along the prominent fractures. The results of the various
models are discussed also from the view of speleogenetic theories derived
from field observation.
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Povzetek

Voda v kraškem vodonosniku topi matično kamnino. Posledica tega so
specifične lastnosti kraških vodonosnikov, kot so velika nehomogenost, ra-
zlični režimi pretakanja vode itd. Izraz ”razvoj kraških vodonosnikov”
označuje razvoj sekundarne poroznosti v vodonosniku zaradi korozijskega
širjenja razpok. V okvir tega štejemo tudi speleogenezo oziroma razvoj
jam.

Pričujoče delo skuša na osnovi numeričnih modelov odgovoriti na vprašanje:
Kateri mehanizmi oblikujejo kraški vodonosnik in kateri parametri
določajo časovni in prostorski razvoj kraških kanalov ?

Delo obravnava zgolj zgodnjo fazo razvoja vodonosnika, do vzpostavitve
turbulentnih tokov. Zastavljeno je v smislu od enostavnega h komplek-
snemu. Prvi del obravnava korozijski razvoj enostavne razpoke oziroma
kraškega kanala, drugi del razvoj dvodimenzionalne razpoklinske mreže,
v tretjem delu pa je predstavljen model vertikalnega razvoja odprtega
vodonosnika. Vsak od teh modelov z določenega vidika odgovarja na zgoraj
zastavljeno vprašanje. Ta povzetek zajema nekatere ključne rezultate, ki
so predstavljeni v delu.

• Razvoj enostavne razpoke: enodimenzionalni model: Izraz ”enos-
tavna razpoka” (angl. single fracture) označuje eno samo razpoko oziroma
zaporedje razpok, ki prevajajo isti tok. Rezultate modela razvoja enos-
tavne razpoke lahko strnemo v naslednjih nekaj točk:

– Ob konstantnem hidravličnem potencialu med pritočno in odtočno
točko, pretok s časom narašča zaradi korozijskega širjenja razpoke.
Pretok in hitrost reakcije vzdolž razpoke sta preko ohranitvenih za-
konov povezana tako, da rast pretoka povzroči rast hitrosti reak-
cije in obratno. Pretok skozi razpoko pospešeno narašča do preboja
(angl. breakthrough), ko v kratkem času naraste za nekaj redov
velikosti. Preboj označuje konec začetne faze speleogeneze. Po pre-
boju in vzpostavitvi turbulentnega toka kanal raste enakomerno po
vsej dolžini. Prebojni čas, čas od začetka razvoja do preboja, lahko
vzamemo kot merilo za intenziteto speleogeneze v določenih pogojih.

– Prebojni čas je potenčna funkcije osnovnih kemičnih in fizikalnih
parametrov, ki določajo pretok in reakcijsko hitrost v razpoki ob
začetku razvoja in je obratno sorazmeren s hitrostjo raztapljanja pri
iztočni točki ob začetku širjenja razpoke.

– Analitična obravnava razvoja razpoke je relativno enostavna ob pred-
postavki, da je širjenje enakomerno, določeno s hitrostjo reakcije ob
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iztočni točki. Analitični približek za prebojni čas se funkcijsko ujema
z numeričnimi rezultati.

– Kemični parametri vzdolž razpoke se lahko spremenijo zaradi ra-
zličnih vzrokov. Kot primera sta navedena spremembe litologije in
izvori CO2 v freatični coni. Te spremembe, četudi relativno majhne,
močno vplivajo na prebojni čas. Sprememba prebojnega časa je
odvisna od relativne spremembe parametrov in položaja spremembe
v razpoki. Analitična obravnava je podobna kot pri osnovnem mod-
elu; prebojni čas je obratno sorazmeren z začetno hitrostjo reakcije
v grlu - točki, kjer se razpoka širi najpočasneje .

• Pomen mešalne korozije v zgodnji speleogenezi: Mešalna koroz-
ija je posledica nelinearnosti ravnotežne krivulje med Ca2+ in CO2. Do
mešalne korozije pride ob mešanju vod z različnimi ravnotežnimi kon-
centracijami. Danes je splošno sprejeto dejstvo, da mešalna korozija ne
igra ključne vloge v speleogenezi, saj je nelinearna kinetika raztapljanja
apnenca zadostna za razvoj dolgih kraških kanalov. Prisotnost mešalne
korozije pa lahko močno vpliva na prostorski in časovni razvoj razpok.
Kot primer vpliva mešalne korozije na zgodnjo speleogenezo je prikazan
model stika dveh dotočnih in ene odtočne razpoke. Dinamika razvoja
takega sistema je ob prisotnosti mešalne korozije precej bolj kompleksna,
prebojni čas pa se skraǰsa tudi več kot za polovico.

• Razvoja dvodimenzionalne razpoklinske mreže: Dvodimenzion-
alna razpoklinska mreža je nadgradnja modela enostavne razpoke. Os-
nova predstavljenega modela je pravokotna mreža, v kateri so razpoke
statistično razporejene med mrežnimi točkami. Tako mrežo imenujemo
perkolacijska mreža. Razvoj mreže določajo geometrični parametri razpok,
geokemični parametri, prostorska razporeditev razpok ter razporeditev
pritočnih in odtočnih točk. Razvoj poteka vzdolž različnih poti, ki povezu-
jejo pritočno in odtočno stran. Če je začetna širina vseh razpok enaka
in če se geokemični parametri v mreži ne spreminjajo, se prvi preboj
dogodi vzdolž najkraǰse poti. Razvoj je s časovnega vidika podoben
razvoju enostavne razpoke. Sprememba geokemičnih parametrov v mreži
(litologija, izvori CO2, mešalna korozija) lahko močno vpliva na pros-
torski vzorec razvitih razpok. Bolj ko je pritočna voda nasičena, bolj
enakomeren je razvoj mreže. Mešalna korozija v razpoklinski mreži povzroči
rast izoliranih kanalov v območju mešanja vod z različno ravnotežno kon-
centracijo ceq. S časom vse več vode v mreži izvira iz dotokov z vǐsjo ceq,
zato se območja mešanja krčijo in rast izoliranih kanalov zamre. Kljub
temu pa ti kanali močno vplivajo na razvoj mreže in na razporeditev
kanalov ob preboju.

• Vertikalni razvoj odprtega vodonosnika Model temelji na vertikalni
mreži pribl. 50µm širokih razpok. V modelu je pomembna prisotnost vod-
nega nivoja oziroma freatične površine (v tem primeru gre za krivuljo).
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Ta predstavlja mejo med freatično (nasičeno, prežeto) in vadozno (ne-
nasičeno, neprežeto) cono. Predpostavljen je konstanten dotok vode v
mrežo na površini. Voda skozi vadozno cono na vodnem nivoju vstopa v
freatično cono.
V freatični coni je voda najagresivneǰsa ob vodnem nivoju, kjer je širjenje
razpok najhitreǰse. To povzroči, da velik del vode odteče skozi dobro
prepustni pas vzdolž vodnega nivoja. Vodni nivo s časom pada zaradi
naraščanja hidravlične prepustnosti v freatični coni. Za seboj pušča pas
vadozne cone z do nekaj redov velikosti večjo hidravlično prepustnostjo,
kot jo ima vodonosnik ob začetku zakrasevanja. Ko se vodni nivo spusti
do nivoja erozijske baze, tam tudi ostane. Pri tem raste kanal vzdolž
nivoja erozijske baze, od izvira v notranjost vodonosnika.
Raztapljanja v vadozni coni model ne upošteva. Predpostavlja pa, da je
voda ob vstopu v freatično cono nasičena glede na dolžino poti v vadozni
coni, torej glede na vǐsino vodnega nivoja na mestu vstopa v freatično
cono.
Če je poleg konstantnega dotoka na robu še konstantni potencial, pride
do preboja vzdolž vodnega nivoja ko ta doseže območje konstantnega
potenciala. V enakomerno mrežo lahko deterministično ali statistično
vključimo sistem glavnih (prominentnih) razpok z večjo začetno odprtino
(npr. 200 − 400µm). Ob konstantnem potencialu na robu lahko prvi
preboj poteka vzdolž glavnih razpok, ob vodnem nivoju ali pa je prebojna
pot kombinacije obeh.
Tudi ko na robu ni konstantnega potenciala, glavne razpoke v zgodnji
fazi rastejo pospešeno zaradi povratne zanke. Padec vodnega nivoja in s
tem potencialne razlike vzdolž razpok, v predstavljenih modelih še pred
prebojem zaduši povratno zanko. Po padcu nivoja do erozijske baze, se
lahko glavnina toka pretaka pod tem nivojem, preko zank, ki jih tvorijo
razširjene glavne razpoke.
Rezultati modela se v veliki meri ujemajo z znanimi konceptualnimi mod-
eli zgodnje speleogeneze.
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